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ABSTRACT

Multi-elementgeochemical surveys of rocks, soils, stream/lake/floodplain sediments, and ragelitarried out by governments and
mineral exploratim companies at continental (850 million kn?), regional (500500,000 krf) and local (0.5500 knj) scales. The
chemistry of these materials is defined by their primary mineral assemblages and their subsequent modification by comminution
weathering. A geochemical database, with 50 or more elements determined to sufficiently low detection limits, repredéints a mu

dimensional geochemical space that can be studied using multivariate statistical

geochemical/geological processes are described (process discovery). These patterns form the basis from which prokdiitistc pr

maps are created (process validation).

Processing geochemical survey data comprised of many thousands of samples requires a systematic approach to effpotivéhe inter
multi-dimensional data in a meaningful way. When assembling large datasets fioosw@urces, care must be taken to understand the
nature of the sample media, the methods of sample collection and preparation, the laboratory digestion procedures ayticdle ana
instrumentation methods. Problems that are typically associated wetintirpretation of multelement geochemical data include closure,
missing values, censoring, merging, levelling different datasets, and adequate spatial sample design. Of particularcsignifieaeffect

of stoichiometry within the logratio framewothat has been developed to deal with compositional data.

Recent developments in advanced multivariate analytics, geospatial analysis and mapping provide arfreffeetioekto analyzeand

interpretthe information inhererin geochemical datasets. Geochemical and geological processes can often be recognized through the use

of data discovery procedures such as the application of principal component analysis after compositionally appropriatputatian
and transformation. Gssification and predictive procedures, at the continental, regional and camp scales, can be used to confirm
lithological variability, hydrothermal alteration, and mineralization. Studies of ralétiment geochemical survey data of lakeftill
sediments fron€anadaand offloodplain sediments from Australia show that predictive maps of bedrmtkegolith processesan be
generated. Upscaling a multivariate statistltased prospectivity analysis for arc related-Su mineralizationfrom a regional survey in
the southern Thomson Orogérorthern New South Wales and southern Queenytarithe continental scale, reveals a number of regions
with similar (or stronger) multivariate response and hence potentially similahiginen mineral potential throughout Astralia.

INTRODUCTION

What are geochemical datasets?

Geochemical datasets can be defined as geochemical data
derived from a range of media (e.g. soll, till, regolith, lake
sediments, stream sediments, bedrock) collected at a spatial
scale consistent with the geological/geochemical processes
being investigated. Continental, regional and local scale surveys
reveal increasingly detailed processes ranging from the tectonic
assemblage of continents to hydrothermal veining, for instance.

The intent of geochemical surveys is to provide a spatial
geochemical description of the general geology or dominant
geochemical processes as manifested in the medium being
sampled. For example the geochemistry of glacial till or regolith
over an area may refleche underlying geology, or it may
reflect the source material that has been transported.

The Value of Geochemical Rtasets

Geochemical surveys generallgontribute to the economy,
environment and society through supporting -faased
decisions in the fédwing applications: mineral exploration,
regional geological mapping, agriculture and forestry,
environmental baseline monitoring, environmental remediation,
geohealth, and general land use stewardship. For example,
geochemical surveys can have an impactthe understanding

of human health issues fromatural contamination of theource

rock or the effects of the urban environment through
anthropogenic activities that result in local pollution

Survey Area and Density

Sample density is a critical aspeétggochemical survey design
and subsequent interpretation. Sample density, generally
described in terms of the average area that each sample site
represents, will have an influence on the detection and discovery
of geochemical/geological processes thathasted at a specific
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spatial scale. Local scale or higensity surveys have sample
site densities in the range of more than 100 sites p&tdune

site per k. Regional scale geochemical surveys can vary from
one site per kifto one site per 500 Kimand continental scale
surveys can vary from one site per 500?kmone site per 5000
km? (Geological Survey of Northern Ireland, 2007; de Caritat
and Cooper, 2011Smith et al., 2011; Reimann et a2009,
2010, 2014). It is evident that higtensity sureys are able to
detect local scale processes, which can be associated with
mineral deposits. As the density of a survey decreases, the
likelihood of randomly sampling a site that is associated with
alteration or mineralization decreases. Conversely, stgdyi
increasing larger areas allows detection of large scale geological
processes such as continental accretion, collision, and major
fault and shear zones.

Geochemical [ata

The following is a brief summary of the primary considerations
that must be taken tim account when obtaining, compiling and
synthesizing geochemical data prior to statistical treatment and
interpretation. This is not intended to provide all of the details
that are necessary when obtaining geochemical data.

Choosing the &mpleMaterial

The choice of sample media is a critical part of the strategy of
any geochemical survey. -Sampbi
geochemical processes pertaining to the underlying geology.
Sampling regolith that has
s i t u ock tmay gresent a geochemical signature that reflects
both the protolith and its weathering. Sampling transported
material, such as glacial till, lake sediments, stream sediments,
overbank sediments, colluvjabr alluvial material may reflect
varying amouts of transport and mixing of several processes,
which may be desirable. It is important to recognize the nature
of the sample media and abilities and limitations of what can be
interpreted from the derived geochemical data.

Choosing the ApropriateSizeFraction

In sample media that are comprised of a mix of mineral/organic
matter, the size fraction of the mineral grains or particles
analyzed can be important in distinguishing between
geological/geochemical processes. In most sample media, a
distinction ketween coarsgrained (typically >8 pm and <2
mm) and finegrained (<@ um) fraction is commonly used.
Coarsegrained material can be considered, in many cases, to
represent locally derived particles, or minerals that have not
undergone weathering, comminution, or chemical dissolution.
The geochemical signature from figeained mineral matter
may represent minerals that have undergone weathering,
comminution and chemical dissolution/precipitation. The-fine
grained size fraction is generally considered to reflect a greater
range of geochemical processes, although this is deperon

the source material and the nature of the subsequent processes

that occurred. Another consideration to be aware of relating to
particle sizing is that certain sample analysis methods (e.g.
fusion to prepare glass discs for XRF or-l@P-MS analysi¥

may require the sample to be ground or milled to a given
specification (e.g. >X% of mass passing through a 60 pm sieve).
If this is the case, the impact of breaking up mineral aggregates

bee

and/or lithefragments at the sample preparation stagea fit
for-purpose strategynust be borne in mind when interpreting
the results

Choosing the Appropriate Analytical Methodigestion
and hstrumentation

The choice of analytical method, which includes the method(s)
of sample digestion and subsequent instrumentation for
determining elemental abundances, is critical in the
interpretation of the results. The choice of sample digestion is
generally the mosimportant Several types of acid digestion,
including fouracid (HFHCI-HNOs-H,SQ,), aqua regia, and
numerous weak/partial extractions, will (preferentially) dissolve
specific mineral, organic and amorphous phases, or target
certain physical sites (e.g. adsed ions, exchangeable cations).
Fouraci d digestbmpl esea
all but the most resistant minerals (e.g. monazite, zircon). The
use of aqua regiss useful for dissolving sulfide/oxide type
minerals while leaving mosilieate minerals unaffected. Weak
acid leaches (extractions) tend to dissolve the coatings on
mineral grains and/or adsorbed species that are associated with
alteration/mineralization processes. Other methods of sample
preparation include the use @ totd fusion (rather than
digestion) whereby finely ground sample material is melted with

a flux (e.g. LiB,4O;) to form a homogeneous glass bead or disc
W%t cap gw rei(t)har’\l%)e q,H%‘Iy);ed Idireeg}l)é o fakerrl] iptﬂ solution
wi e.g., (9}

an acid,

The rgsglt{nglj élldesglutiobn Yis then grésgnt%cg fo AP aneﬂyIicaI ni
instrument after dilution as appropriate. Common technology
includes inductively coupled plasroptical emission
spectrometry (ICROES) and inductively coupled plasimeass
spectrometry (ICRMS). In these teahiques, the acid digest is
first aspirated into a chamber and typically admixed with argon
gas before being converted at high temperature to a plasma.
Subsequentlyan optical emissiospectrumis produced where
each element has a unique emissigpectrum (ICP-OES).
Alternatively, a mass spectrometer can be used to separate the
elements or molecules based on their unigue mass signature
(ICP-MS). Older but still current methods of instrumentation
include atomicabsorptionspectroscopy (AAS)ire assay is &
preferred method opfreparationin oregrade materials for the
determination of Au, Pt, and Pd. Methods such Xasay
fluorescence (XRF) and instrumental neutron activation analysis
(INAA) have the ability toanalyzea sample without a wet
digestion thusdelivering a true total analysis. The former is
routinely used for the determinatiai major mineral forming

oxides (e.g. AlOs;, SiO,, etc.).

Quality Assurance/Quality Gontrol (QA/QC)

A critical component of geochemical analysis is the monitoring
of all procedures that result in the analytical values. Quality
control measures include the use of blanks, duplicates and
standards to ensure that the results produced are fit for purpose.
Two fAqualityd parameters are
which measws the repeatability of measurements, and
accuracy which quantifies how close the obtained results are to
the Areal 06 values. Bl anks all
introduced at any stage of the process, from sampling to
analysis. Duplicates can beparated into two types on the basis

dhgasti on
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of their purpose: field duplicates (collected within a given processes (bedrock, alteration, mineralization, groundwater,
distance from the original sampleyhich are used to quantify weathering gravitational sorting), then the obsefieas can be

the total (sampling and analytical) precisicand laboratory assembled into training sets in which the uniqueness of these
duplicates (split in the laboratounder controlled conditions) groups can be tested.

which test only the analytical precision. Finally, standards also

come under two guisefirstly, internal project standards (IPSs), Process Discovery and Processalidation

which can track drift in the preparation and analysis steps within
and between batches,dagecondlycertified reference materials
(CRMs), which compare results to certified analytical results
and are used to establigitcuracy There is a wide range of
CRMs (rocks, soils, sediments, water, and vegetal matters)
available; thosehosenshouldbe similar to the material that is
being analyzed.

A two-step approach is recommended for evaluating multi
element geochemical data.n t he f i r st iproces
patterns, trends and associations between observations (sample
sites) and variables (elements) are teased out. Geospatial
associations are also a significant part of process discovery.
Patterns and/or processes that demonstrate geospatial coherence
likely reflect an important geological/geochemical process.

The Compositional Nature of Geochemical Bta Following process discovery, fpr

Geochemical data are, by definition, compositional in nature.  which the patterns or associations are statistically tested to
Elements or oxides of elements are generally expressed as parts determine if these features are valid or merely coincidental
per million (ppm), parts per bibn (ppb), weight percent (wt%, associationsPatterns and/or associations that reveal lithological
or simply %) or some ot her f or variability ifi purficigh sedimentofor dnstant¥hcambedugsetl &0 ar e
expressed as proportions, there are two important limitations:  develop training sets from which these lithologies can be
first the data are restricted to the positive number space and predicted in areas where there is uncertainty in the geological
must sum to a constant (e.g. 1,0@@ @pm, 100%), and second mapping and/or aucity of outcrop. Patterns and associations
when one value (proportion) changes, one or more of the others that are associated with mineral deposit alteration and
must change too to maintain the constant sum. This problem mineralization may be predicted in the same way. Indenwsity
cannot be overcome by selecting sidmpositions so that there geochemical surveys, where processes such as those related to
is no constant sum.| dher dda,0 nsitakdndtian mnd mMmineralizatioardi generally undesampled, it
results in unreliable statistical measures. The use of ratios may be difficult to carry out the process validation phase
between elements, oxides or molecular components that define a relating to these processes.

composition is essential when making comparisons between

elements in systems such as igneous fractionation (Rearce A multivariate approach is an effective way to start the process
1968). The use of logarithms of ratios, or simply logratios, is discovery phase. Linear combinations of elements that are
required when measuring moments such as variance/covariance controlled by stoichiometry may emerge as strong patterns,

(Aitchison, 1986; Egozcue et al., 20Muccianti et al., 2006; whilst random patterns and/or undmmpled processes show
PawlowskyGlahn and Buccianti, 201 Buccianti and Grunsky, weak or uninterpretable patterns. This approach was
2014. successfully used by Grunsky et al. (2012) using reldiment

lake sediment geochemical datanfrahe Melville Peninsula
The relationships between the elements of geochemical data are area, Nunavut, Canada, and by Caritat and Grunsky (2013) using
controlled by fAnatur al | aws 0 (céntinentah scal® muteletén® Bajchment routldt rsediment s e
inorganic geochemistry that law is stoichiometry, which governs  geochemical data from Australia.
how atoms are combined to form minerals, and thereby defines

the structure within the data. Geochemical data are not the only  Processes are recognized by a continuous range of variable

data type of data to exhibit structure. responses and arassociated relative increase/decrease in
element concentrations. The presence of data that are reported at
METHODS less than the lower limit of detection (LLD), referred to as

censored data, can affect the derivation of associations in the
process discovery stagélsing the detection limit, or some

Philosophy arbitrary replacement value (e.g. %2 LLD), as replacement values
To effectively interpret geochemical data, a iplmsed for censored data, although commonly performed, may bias any
approach is suggested: initial process discovery, followed by statistical (especially multivariate) calculation. Treatment for
process validatie. This strategy identifies geochemical/ censored data has been studidithin the medical epidemiology
geological processes that exist in the data imay not be community for a long time and was recognized as a proldem f

obvious unless robust statistical methods are utilized. The geochemical data in the 198QChung, 1985; Campbell, 1986;
process discovery phase is most effective when carried out using Sanford et al., 1993). Research by Maffernandez et al.

a multivariate approach. Lineacombinations of elements (2003) and Hron et al. (2010) provided ieais methods for

related by stoichiometry are generally expressed as strong finding replacement values for the censored data.instance

patterns, whilst random patterns and urslEnpled processes th e R package AfzCompositionso w
show weak or uninterpretable patterns. If the process discovery (PalareaAlbaladejo and MartisFernandez, 2008; Palarea

phase provides evidence that there is streciurthe data, then Albaladejo et al., 2014) can be used to determine suitable

models can be built and tested using the process validation repla@ment values for several of the elements. Equally
phase. If groups of observations are associated with specific important is the distinction between missing values (i.e. no data)
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and censored data. Missing values may not be censored values,
requiring a decision on how they should be replaced, or if they
should be uskat all(Martin-Fernandez et al., 2003).

Advanced Analytics for Process scovery

Process discovery involves the use of unsupervised multivariate
methods such as principal component analysis (PCA),
independent component analysis (ICA), mdithensional
scaling (MDS), or random forests (RFs), to name a few. Model
based process discovery methods can also be used, such as
modetbased clustering (MBC) or RFs. As described previously,
statistical measures applied to geochemical data typically reveal
linear rehtionships, which may represent the stoichiometry of
rock-forming minerals and subsequent processes that modify
mineral  structures, including hydrothermal alteration,
weathering and watepck interaction. Rysical pocesses such

as gravitational sorting an effectively separate minerals
according to the energy of the environment and mineral/grain
density. Mineral chemistry is governed by stoichiometry and the
relationships of the elements thatke upminerals are easily
described within the simplexan ndimensional composition
within the positive real number spacét has long been
recognized that many geochemical processes can be clearly
described using element/oxide ratios that reflect the
stoichiometric balances of minerals during formation (e.g.
Peare, 1968). Geochemical data, when expressed in elemental
or oxide form,can bea proxy for mineralogy. If the mineralogy

of a geochemical data set is known, then the proportions of these
elements can be used to calculate normative mineral proportions
(deCaitat et al., 1994; Grunsky, 2013).

An essential part of the process discovery phase is a suitable
choice of coordinates to overcome the problem of closure. The
centred logratio (clr) transformation (Aitchison, 1986) is a
useful transform for evaluatingeochemical data. The principal
components (PCs) of etransformed data are orthonormal (i.e.
statistically independent) and can reflect linear processes
associated with stoichiometric constraints. The PCs offer a
significant advantage for subsequent psscvalidation.

Advanced Analytics for Process Mlidation

Process validation is the methodology used to verify that a
geochemical composition (response) reflects one or more
processes. These processes can represent lithology, mineral
systems, soil development, ecosystem properties, climate, or
tectonic assemblage Validation can take the form of an
estimate of likelihood that a composition can be assigned
membership to one of the identified processes. This is typically
done through the assignment of class identifier or a measure of
probability. The prediction otlass membership can be done
through techniques such as linear discriminant analysis (LDA),
logistic regression (LR), neural networks (NN), support vector
machines (SVMs), RFs or other machine learning procedures.

A critical part of process validation fke selection of variables
that produce an effective classification. This requires the
selection of variables that maximize the differences between the
various classes and minimizes the amount of overlap due to
noise, unrecognized or undeampled process in the data. As
stated previously, because geochemical data are compositional

in nature, the variables that are selected for classification require
transformation to logratio coordinates. The additive logratio (alr)

or the isometric logratio (ilr) are dth effective for the
implementation of classification procedures. Thetmnsform

is not suitable because the covariance matrix of these
coordinates is singular. However, analysis of variance
(ANOVA) applied to cletransformed data enables the
recogniton of the compositional variables (elements) that are
most effective at distinguishing between the classes. Choosing
an effective ahtransform (choice of suitable denominator) or
balances for the Htransform can be challenging and requires
some knowledg and insight about the nature of the processes
being investigated. ANOVA applied to the PCs derived from the
clr-transform has been shown to be highly effective at
discriminating between the different classes (Grunsky et al.,
20147 Melville Peninsula; Qunsky et al., 2017 Australia).
Because the dominant PCs (PC1,
active processes, as discussed above, and the lesser components
(PCn, PCHL , é, wher e n i s t he numb
reflect undersampled processes or noise, thee of the
dominant components can be effectively used for classification
using only a few variables. Classification results can be
expressed as direct class assignment or posterior probabilities
(PPs) in the form of forced class allocation, or as class
typicality. Forced class allocation assigns a PP based on the
shortest Mahalanobis distance of a compositional observation
from the compositional centroid of each class. Class typicality
measures the Mahalanobis distance from each class and assigns
a PP bast on the Fdistribution (Campbell, 1984; Garrett,
1990) This latter approach can result in an observation having a
zero PP for all classes, indicating that its composition is not
similar to any of the compositions defined by the class
compositional centids.

The application of a procedure such as LDA can make use of
cross validation procedures, whereby the classification of the
data is repeatedly run based on random partitioning of the data
into a number of equal sized subsamples. One subsample is
retaired for validation and the remaining subsamples are used as
training sets. This approach produces stable results and reduces
the influence of outliers (Aitchison, 1986; Tolosgbelgado,
2006; PawlowskyGlahn and Egozcue, 2016). However, the
subsequent desation of maps displaying PPs, which are
compositions in themselves, requires a suitable logratio
transformation to deal with the newegativity and the constant
sum constraint of compositional data. Posterior probabilities are
transformed using an abransform followed by ordinary co
kriging after which a backansformation is carried out for
geospatial rendering. It is important to note that the alr
transform cannot be used to estimate kriging variance
(Aitchison, 1986; TolosanBRelgadg 2006). Kriging variance

can be estimated by the calculation of the expected value and
error variance covariance matrix by Gatis=rmite integration
(PawlowskyGlahn and Olea, 2004) after which a back
transform can be applied.

Classification accuracies can be assedsexligh the generation

of tables that show the accuracy and errors measured from the
estimated classes against the initial classes in the training sets
used for the classification.
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Geospatial ®@herence evaluation of regional geochemical survey data in the Melville
Peninsula area (Figwsd and 2. Recent work by Grunsky et al.

e (2014), Harrisand Grunsk/ (2015) and Mueller and Grunsky

(2016) has evaluated the lake sediment and till geochemistry in

The results from the classification of samples gathere a
geochemical survey should bear a geospatial resemblance to th

area sampled. The creation of maps is part of the process h f dicti logical . d mi |
validation procedure. If a geospatial rendering of a posterior the context of predictive geological mapping and minera

probability shows no spatial coherence (i.e. no structure, air a | resource potential. Figl.”e 2 shows a ge”er"’.‘”Z?d geol_ogical map

of fAnoiseod), then it is |ikel° the gep and figure 3, shaw i“?e'P‘“lf%\Jt”?'”Srﬂ' Cwi 11
difficult to interpret within a geological context. The most occurrences (.)f _the area. A study In the use o F'l g_eocheml_cal
effective way to test this is through the generation and modelling data fqr predlctlve geologlc mapping using multivariate Spa"%'

of semivariograms that describe the spatial continuity of a analy5|s is summarized by Mueller anq Grunsky (2016) and is
specific class based on PPs. If meaningful seaniograms can not discussed here for the sake of brevity.

be created, then geospatial maps of PPs can be generated
through interpolation using the kriging process. Maps of PPs
may show low overall values but still be spatially coherent. This

is also réected in the classification accuracy matrix that

The gedogy is comprised of polydeformed and
polymetamorphosed Archean and Paleoproterozoic assemblages
(Machado et al., 2011, 2012; Corrigan et al., 2013; Grunsky et

indicates the extent of classification overlap between classes. 3" _2014%' T't;e area} was covered d bly_the Laurent:‘de ficeh sheet
Geospatial analysis methodology described by Bivand et al. uring the 0);6 gacwlltl_cl)In.PSa_n yltco_l\_/:rs mucl of t f h
(2013) and the fAgstato packagé’ortqeﬁ'@q{teosthﬁe{wev'ﬁoea'ﬁs a. hhe cenyal pag gf thg, o

used to generate theagtatistical parameters and images of the area was coyered ya cdjaseq Ice cap that preserved much of
PCs and PPs from kriging. the preglacial landscape, which is composed of weathered

regolith and boulder rubble with only local gial transport
(Dredge, 2009; Tremblay and Paulen, 201&pcording to

TWO CASE STUDIES Dredge (2009 , AGl acially scodassed I ak
glacial erosion forms are absent. Apart from a few scattered
Melville Peninsula, Nunavut, Canada outcrops, the southern plateau surface consists of weathered
regolith, or bouldery rubble that was glacially transported for
Process Discovery andalidation short distances. The main glacial landforms are distinctive

subglacial and ice marginal channels associated with wasting
phases of the ice sheet. The till on most of the plateau is
immature, and téa matri X t endsThetlake b e S
sediments are the result of reworking and sorting of the glacial

till that developed during the retreat of the ice sheet

The Melville Peninsula region, Nunavut, has been the focus of
geological mapping and lake sediment and till geochemical
sampling for the past 40 years. The example presented here
highlights the value of mukglement geochemical data as an aid
to regional geological mapping and exploration targeting for
potential base and precious metal deposits through the

Nunavut Lithologies

U intrusive rocks
[ metamorphic rocks

sedimentary and
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N || sedimentary rocks
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Figure 1: Regional basement rock type map of Nunavut, Canada, showing location of the Melville Peninsula study area.
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Regional Geology

[ APW [Undivided supracrustal rocks)

APWk [Komatiite/ultramafic intrusive rocks]
[ APws [Pelite, psammite, wacke, quartzite]
[ APgn [Gneiss)

[ Ab [ Granodiorite]

[ Adg [Gabbro/Diorite]

[ Agd [Granodiorite]

[ Agu [Granitoid orthogneiss]

Akg [K-feldspar porphyritiic granodiorite]
[] Amg [Monzogranite]

|:| Amgn [Undivided gneiss]

[ PHg [Hudson granite]

D Ps1/2 [Lower metasedimentary succession]
[ ps2v [Continental Tholeiitic Basalt]

[T Ps3 [Upper metasedimentary succession]

Lake Sediment Sample Sites
+  Sample Sites

NAD83
UTM Zone 17

Figure 2: Geological map of the southern part of the Melville Peninsula, Nunavut, Canada, with lake sedimentsgamghown as
black dots) fronDay et al. (2009).

Regional Geology
APW [Undivided supracrustal rocks]
APWK [Komatiite/ultramafic intrusive rocks]
APWs [Pelite, psammite, wacke, quartzite]
APgn [Gneiss]
Ab [ Granodiorite]
Agd [Granodiorite]
Agu [Granitoid orthogneiss]
Akg [K-feldspar porphyritiic granodiorite]
Amg [Monzogranite]
Amgn [Undivided gneiss]
PHg [Hudson granite]
Ps1/2 [Lower metasedimentary succession]
Ps2v [Continental Tholeiitic Basalt]
Ps3 [Upper metasedimentary succession]

Mineral Occurrences

) Ag dominant
Au dominant

Cu dominant
Fe

Fe-Cu

Mo dominant
Ni dominant

Pb-Ag-Zn

U

U-Ag-Cu

243 LX X B

Lake Sediment Sample Sites o

+ Sample Sites

Figure 3: Mineral occurrences obtained from NUMIN (2017).
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Figure 4: Sample quantile versus theoretical quantile plot
showing the effect on the data distribution of imputation for Sb
in lake sediments, Melville Peninsula.

Melville Lake Sediment Survey [clr]
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Figure 5: Screeplot of the eigenvads derived from a PCA
applied to cltransformed lake sediment geochemical data,
Melville Peninsula.

The lake sediment geochemical data used in the study of MapCode |~ itoid/Gneissic | SM
Grunsky et al. (2014) have been publishedha Geological & i’ﬁﬁg f i 7 Eu Ce
Survey of Canada Open File 6269 (Day et al., 2009) based on e ;Qgg Né B:)ayb La
earlier studies by Hormbok et al. (1978a, b). Details on the g i I O oy
sampling methodology and analytical protocols are documented v Amgn | T RS 4
in Open File 6269. Sample pulps collected in the eariéd f g e Ao o %VX" Prince Albert (APW)
campaigns were ranalyzed usingqua regia digestion angpP- B e R YQ‘ALJ ; )
MS instrumentation. Pulps were also analyzed udiNgA. = ol v S % ,,R%F'\gn )
Where elements have been analyzed using both methods, the « _ |opsv S §5F Ti
elements were evaluated in terms of detection limit suitability =~ © S -2 g (pb MgApa
and visualexamination of the correlation of the element with 0 X
each method. This included the evaluation of the degree of T o 6 T, g € ‘é@v = K
censoring. QA/QC protocols and reporting are provided in the =) o Mot o L \V
reports by Day et al. (2009) and the data were considered e %ﬁ ,XX mgm B e .
adequate for statisticargressing. The R statistical package (R X q::rﬁ Xo Tl
Core Team, 2014) was used to process the data. 7| ® Penthyn (Ps) = & _“ o5 © |°Bj Cs

g | cd® o | &N
Following the protocols described above, the data were screened ? e Ni
for values reported <LLD. Data <LLD were imputed LT L L L T
(estimatedJusi ng the function &gempKD» -0.25 -0.15 -0.05 = 0.05 0.15 025
irobCompositionso (Hron et alfggye & Brihdphl -compoheftbiplbt of ttranSidtiel fake 2

qguantilequantile plotof imputed Sb values that minimizes bias
in calculating statistical moments.

After adjusting the censored values to minimize statistical bias, a
clr-transform was appliedtthe data. These transformed values
were then used to carry out a PCA on the data. A useful tool that
is derived from PCA is the screeplot, which is shown in Figure
5. The screeplot shows the eigenvalues plotted in descending
order. The figure indicatebat eigenvalues decrease rapidly and
that most of the variation of the data is accounted for by the first
five PCs. The remaining PCs can be interpreted as under
sampled or random processes. The five largest eigenvalues
indicate t hat ntthe dataghatiissconfioied byu c t
mineral stoichiometry and, hence, geological processes. The
structure in the data can be visualized using a PC biplot
(Gabriel, 1971). Figure 6 shows a biplot of the first two PCs for

sediment geochemical data, Melville Peninsula. See text for an
explanation of the elemengsociations.

the clr-transformed Melville Peninsula lake sediment
geochemistry. Three generalized features are evident in this
biplot, which accounts for 42% of the variability of the data.
First, the plot indicates the relative relationships of the elements
(loadings) that highlight the relative affinities of the sample sites
and corresponding geological domains. Second, scores of the
sample sites associated with granitoid and gneissic rocks occur
along the positive PC2 axis. Third, sample sites associated with
the Prince Albert Group supracrustal rocks and locally
asdoéided dranitoid rocks occur along the positive PC1 axis and
the sies associated with the Paleoproterozoic Penrhyn
supracrustal rocks occur along the negative P@égative PC2
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axes. Maps of the first and second PCs are shown in Grunsky et
al. (2014). The map of PC1 shows a clustering of positive values
that correspond ith a region of granitoid material and rocks
associated with the Prince Albert supracrustal and associated
granitoid assemblages. The map of PC2 (Figure 7) shows
positive values associated with granitic and gneissic rocks in the
northwest part of the ma@nd negative scores corresponding
with the supracrustal assemblages in the Paleoproterozoic
Penrhyn Group in the southeast part of the map. Thus, as an
initial part of process discovery, a PC biplot provides useful
information on the geochemical nature amélationships of the
data. Grunsky et al. (2014) provide more detail on the use of
PCA in this area There are several other ways that processes
can be discovered in geochemical data as outlined previously in
the process discovery section.

Mineral Exploration Targeting

In the example provided here with Melville Peninsula lake
sediment geochemical data, the underlying geology was tagged
to the sample sites, which are shown in the PC biplot of Figure
6. An analysis of the number of lake sediment sites asteoki
with specific lithologies is summarized in Table 4 of Grunsky et
al. (2014). In this case, eight dominant lithologies, derived from
the revised geology of Machado et al. (2011, 2012), were tagged
to the lake sediment sample sites. As part of the process

300000.000

discovery phase, it is reasonable to test the ability of the lake
sediment geochemistry to distinguish between the dominant
lithologies. This can be done by applying an ANOVA, in which
the most sigificant PCs provide maximum distinction between
the lithologies. Grunsky et al. (2014) demonstrated that PCs
derived from cltransformed geochemical data provide an
effective and efficient means to demonstrate discrimination
between lithologies. Since tiCs represent linear combinations
of elements that are mostly controlled by stoichiometry, more
geological information is contained in fewer components; thus
this approach is more parsimonious and effective than using the
elements. In the study by Grunsky al. (2014), it was found
that the first six PCs accounted for most of the lithological
separation of the data. In contrast, almost all of the 44 elements
were required to maximize differences between the lithologies.

PCA provides insight into processesntrolled by mineral
stoichiometry. Sampling strategies for large scale geochemical
surveys are useful for highlighting dominant processes such as
the underlying bedrock, but are seldom at a sufficient spatial
sampling density for detecting processes tteve small spatial
footprints, such as veining or mineralization associated with an
ore deposit.
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Figure 7: Kriged map of PC2 derived from diransformed lake sediment geochemical data, Melville Peninsula
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Figure 8: Map of the residual values of Au (ppb) estlmated from a robust linear regression @Agure 9: Map of the residual values of Cr (ppm) estimated from a robust linear regression (Cr ~
PC1+PC2+PC3+PC4+PC5) of lake sediment geochemical data, Melville Peninsula. PC1+PC2+PC3+PC4+PC5) of lake sediment geochemical data, Melville Peninsula.

Figure 10: Map of the residual values of Ni (ppm) estimated from a robustrliegaession (Ni ~ Figure 11: Map of the residual values of Zn (ppm) estimated from a robust linear regr¢zsi~
PC1+PC2+PC3+PC4+PC5) of lake sediment geochemical data, Melville Peninsula. PC1+PC2+PC3+PC4+PC5) of lake sediment geochemical data, Melville Peninsula.



