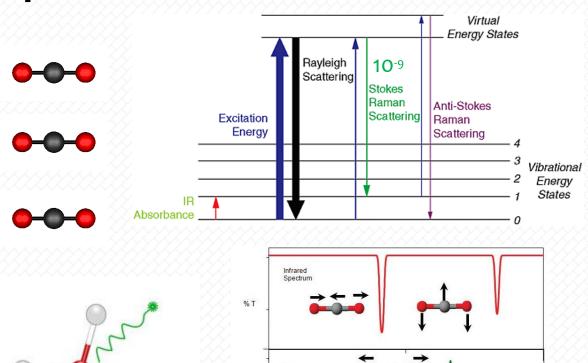
Portable Raman Spectrometers for Geoscience Applications

Jan Jehlička and Adam Culka

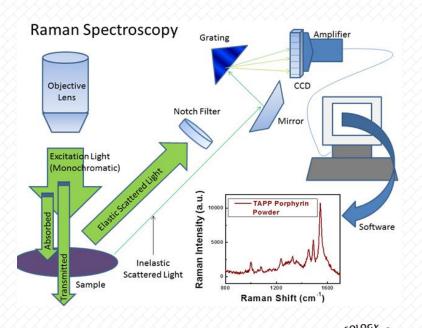
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic


Outline

- » Raman spectroscopy
- » Portable instrumentation
- » Examples of geoscience applications

Raman effect - principle

- » Inelastic scattering of light
- » Discovered in 1928 by C. V. Raman
- » Molecules excited to a virtual energy state
- » Emitted light has different wavelengths
- » The wavelength differences carry information about chemical bonds and structure of the sample

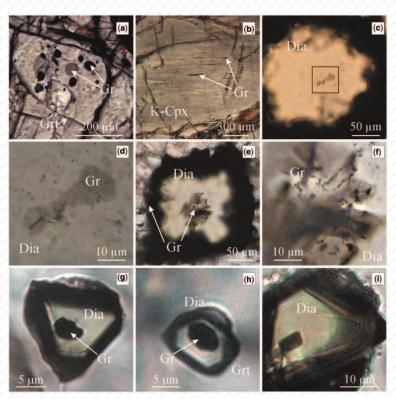

Wavenumber (cm-1)

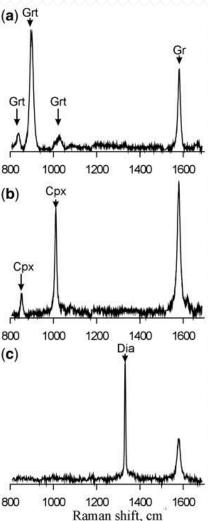
Raman spectroscopy

- » Analytical technique based on the Raman effect
- » Discovery of lasers in 1960s
- » Raman microspectrometers
- » Today many advanced techniques (SERS, hyper Raman)

Advantages of Raman spectroscopy

- » No pretreatment of samples necessary
- » No chemical extraction
- » Fast analysis
- » Inorganics and organics in one analysis
- » Possibility to obtain spectra of micrometric objects
- » Possibility to obtain spectra outdoors onsite

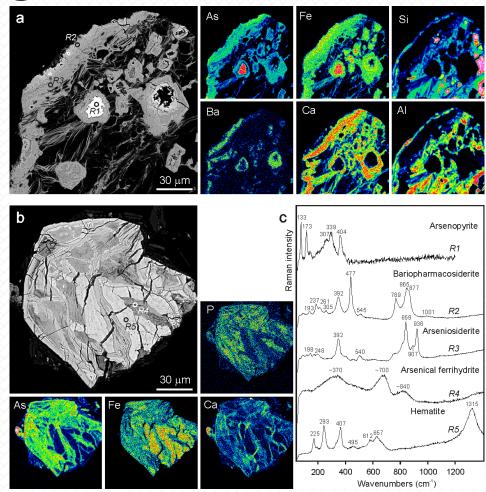




Raman spectroscopy in geoscience

Inclusions in UHPM rocks

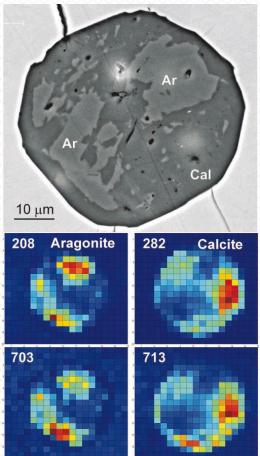
Korsakov et al., 2010

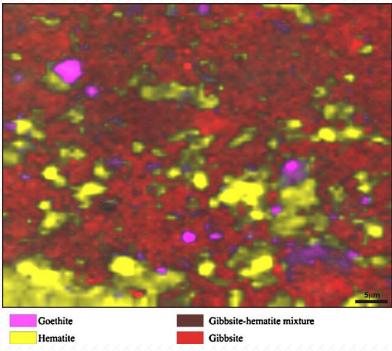




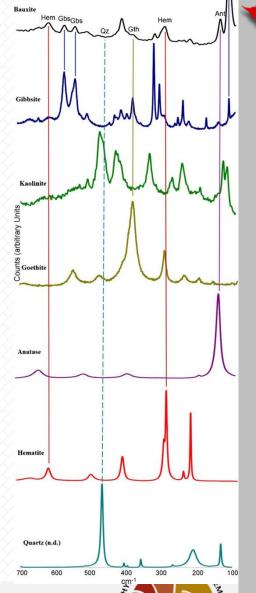
Raman spectroscopy in geoscience

Excellent for mineral phases identification


- » Arsenic mineralogy of soils and mining waste at historic Smolotely-Líšnice gold district, Czech Republic
- » Micrometric analysis, identification of minerals and more amorphous phases



Raman spectroscopy in geoscience Raman spectroscopy in geoscience

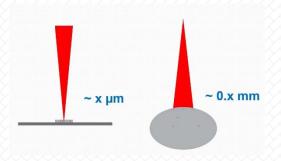


Korsakov et al., 2009

Raman Mapping

Faulstich et al., 2011

sixth Decennial International Conference on Mineral Exploratior



Portable versus laboratory spectrometers

Laboratory instruments

- » Static, but highly configurable
- » Samples have to be brought to a lab
- » Highest precision, accuracy and details
- » Micrometric measurements, mapping

Portable instruments

- » Lightweight and flexible
- » Fast in-situ analyses
- » Generally lower performance
- » Larger laser spot sizes

Research using portable instruments

- » Mineral identification and in-situ analyses
- » Applications in 'extreme' environments (burning coal dumps, underground in mines, Alpine conditions
- » Arts and cultural heritage (gemstones, artifacts)
- » In-situ studies of pigments of microorganisms

In-situ analyses of minerals at outcrops

- » Plešovice quarry, granulites with pegmatic veins
- » Anorthite, muscovite, quartz, zircon, apatite, garnet, tourmaline identified using handheld R.s.
- » Light vs. dark minerals

In-situ analyses of minerals at outcrops

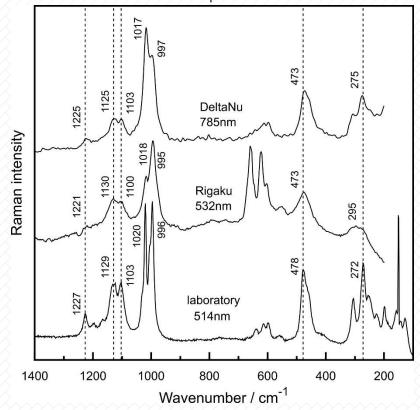
			mstrui	ileilt	шуос	11	Namai		Janus													_		
			referer	<u>nce</u>			<u>10</u>	<u> 182</u>	<u>810</u>	46	<u>65</u> <u>3</u>	<u> 356</u>	<u> 265</u>	<u>207</u>										
			DeltaN	u	in					46	65			214										
<u>Quartz</u>			DeltaN	u	out					47	70 3	359		216										
			Ahura		out				804	46	65 3	354	265	210										
	Ref	<u>1</u>											1009	975	925	<u>641</u>	<u>547</u>	<u>439</u>	<u>394</u>	<u>357</u>			<u>265</u>	22
	Ref	2	Laser	-induce	d fluore	scence	bands						1006	<u>972</u>				<u>436</u>		<u>355</u>	<u>335</u>			22
Zircon	Α	in	1977	7 185	5 153	1	1	502	1462	1379	1257		1007	974		640	537	439	386	357		313		22
	DN	in	1969	9 185	3 153	4			1466	1383	1263		1006		928	639	541	437	391	359		318		
	Α	out	1965	5 184	0	1	518			1374	1259	1225	1003	971		635	544	436		353		314		
Muscovit		<u>ref.</u>		<u>1116</u>	<u>1098</u>	1024		<u>958</u>	<u>913</u>	<u>754</u>	<u>7</u>	<u>03</u>	638	<u>411</u>	<u>382</u>	<u>316</u>	<u>295</u>	<u>265</u>		<u>217</u>	<u>198</u>	<u>172</u>	<u>124</u>	
	ite	Α	in	1109				955	912	753	7	02	636	407	382			264		218				
		DN	in							749	7	04	639	414				267						
		Α	out						912		7	01	638	405	384			265						
			<u>ref.</u>				<u>1076</u>	<u>1</u>	047	<u>962</u>		<u>60</u>	<u>19</u>	<u>589</u>	<u>450</u>	4	<u>31</u>							
Apatite			DN		in		1075			964	730			588				309			267			
			Α		out		1067	1	050	964				588		4.	31							

Legend: **strong band**, normal band, *weak band*, reference1, <u>reference2</u>

- » Locality in Czech republic, pyrite-bearing shists
- » cca. 1850s mining mostly for pyrite for production of sulfuric acid
- » ubiquitous presence of secondary crusts consisting mostly of Fe and Ca sulfates and iron oxohydroxides

Sulfates - Valachov

- In-situ analyses
 using 532 and 785
 nm handheld
 instruments
- » Identification of sulfates in natural relatively complex associations



Sulfates - Valachov

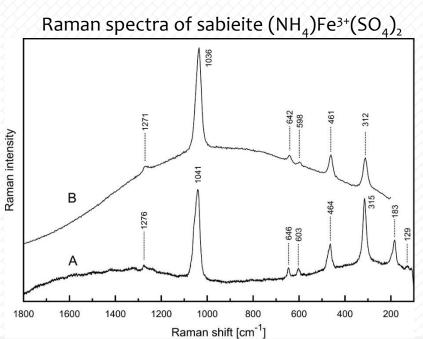
» Based on the interpretation of the Raman spectra, gypsum, rozenite, melanterite, fibroferrite, magnesiocopiapite, and jarosite were identified within the collected samples.

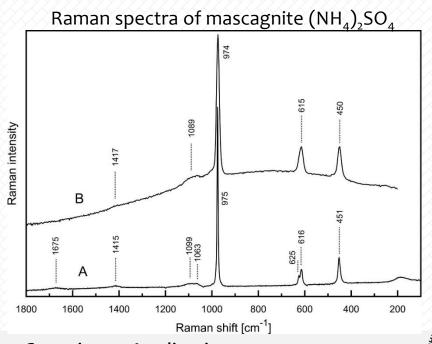
Raman spectra of magnesiocopiapite $(Mg,Fe^{2+})Fe^{3+}(SO_4)_6(OH)_2 \cdot 20(H_2O)$

Burning coal dumps

Burning coal dump - Heřmanice

- » Clastic Upper Carboniferous sediments, bituminous coal seams
- » Dump material accumulated from 1850s till 1993
- » Underground combustion for decades, currently remediated
- » Fumarolic-like mineral associations together with secondary sulf.





Burning coal dump - Heřmanice

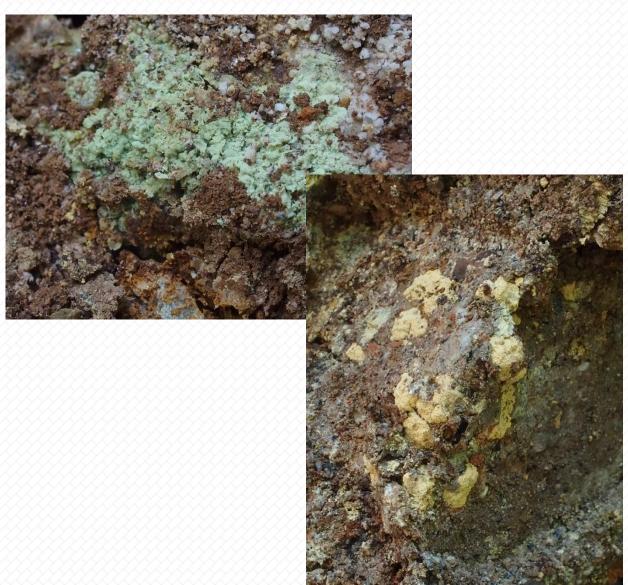
» Identified minerals: native sulfur, sal ammoniac, mascagnite, letovicite, sabieite, godovikovite, efremovite, and pyracmonite

Portable Raman Spectrometers for Geoscience Applications
Workshop 9 – Status and New Developments in Field Portable Geochemical Techniques and
Site Technologies for Mineral Exploration, Thursday October 26th, 2017

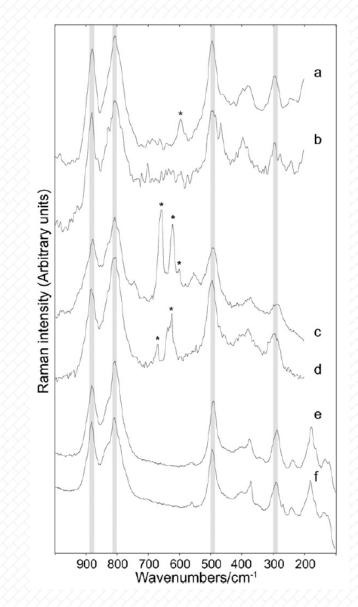
- » Lower temperature environment
- » Similar sulfate-rich mineralogy
- » Work in progress

Portable Raman Spectrometers for Geoscience Applications
Workshop 9 – Status and New Developments in Field Portable Geochemical Techniques and
Site Technologies for Mineral Exploration, Thursday October 26th, 2017

Arsenates – Kaňk, Kutná Hora


- » Locality in Czech republic, highly weathered mine dumps after historic silver, arsenic and copper mining
- » Primary arsenopyrite in association with secondary arsenates and other minerals
- » As contaminated soil and ground water

Arsenates - Kaňk



Arsenates - Kaňk

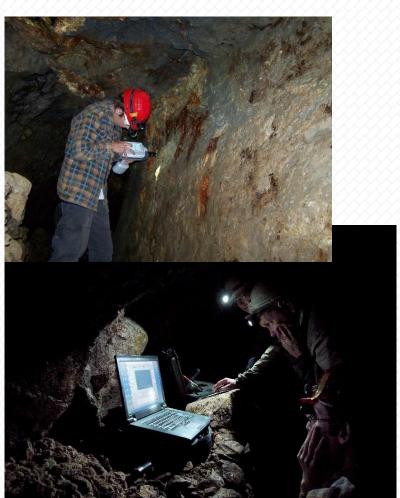
» Bukovskýite, kaňkite, parascorodite, and scorodite were identified in situ using portable Raman instruments

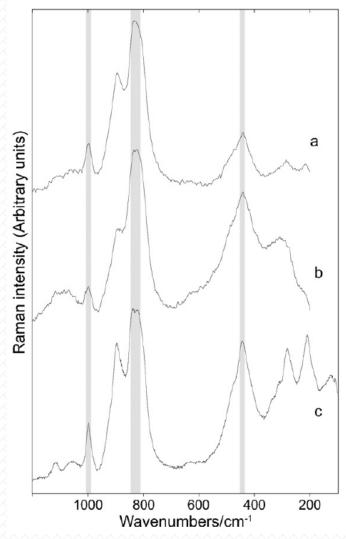
Raman spectra of kaňkite Fe³⁺AsO₄·3.5(H2O)

Arsenates - Lehnschafter

- » Locality in Ore Mountains, Czech republic, historic silver mine complex
- » Slowly being re-opened for visitors
- » Secondary arsenate minerals, deposited on walls and galleries
- » Considerable secondary As mineralization, esp. zýkaite

- » Challenging in-situ measurements
- » Deep in the mountain (200 m tunnel)
- Very high
 humidity,
 condensing water
 may damage
 instruments





ernational Conference on Mineral Exploratior

Arsenates - Lehnschafter

Raman spectra of zýkaite

Applications in cultural heritage and arts

- » Identification of gemstones, exposing fakes or subtitutes
- » In-situ identification of pigments (anorg. and org.)
- » Precious artifacts, cannot be sampled, or even moved to a lab > portable instrumentation
- » Fast analyses

Ring monstrance

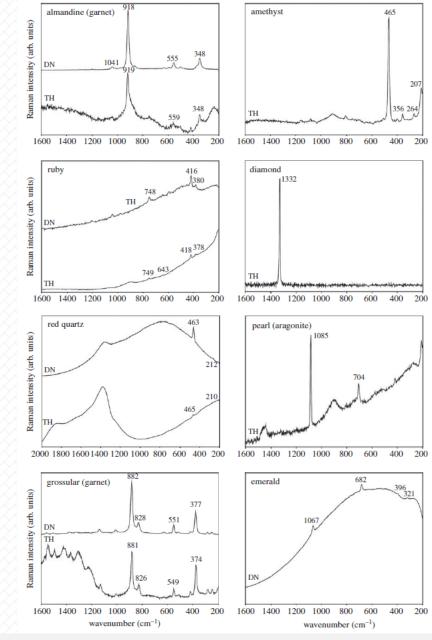
- » Religious artifact (1748) made fo Loreto, Prague
- » Huge historical value
- » Heavily decorated with 65 mounted jewels and 324 stones
- » Great number of 'diamonds'

Ring monstrance

- » Over 200 Raman spectra collected in a few hours using handheld and palm instruments
- » All diamods were confirmed plus other stones such as emerald, rubies, sapphire, amethysts, garnets

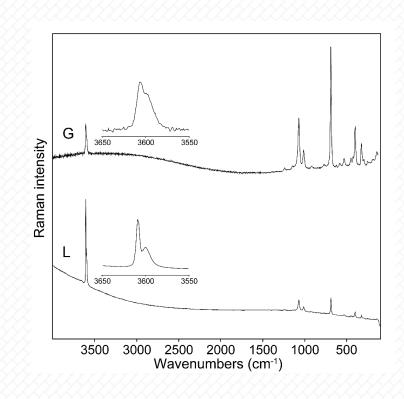
Portable Raman Spectrometers for Geoscience Applications

Site Technologies for Mineral Exploration, Thursday October 26th, 2017



Ring monstrance

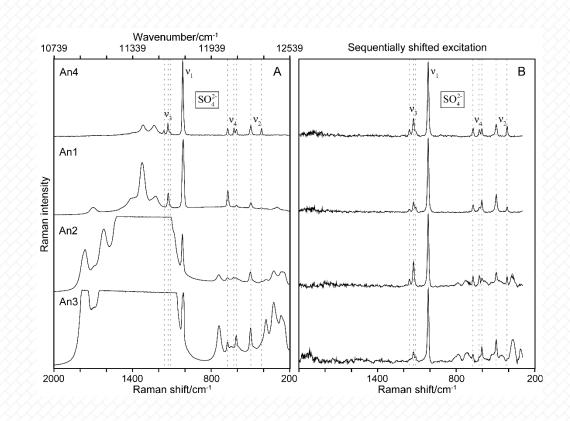
Portable Raman Spectrometers for Geoscience Applications


Workshop 9 – Status and New Developments in Field Portable Geochemical Techniques and Site Technologies for Mineral Exploration, Thursday October 26th, 2017

30/35

ABLEWARDON STANDOCENTE STANDOCENTE

Recent advances in portable instruments


- » Overall improvement of performance and data output getting closer to the laboratory spectrometers
- » Spectral region up to 4000 cm⁻¹ accessible: OH stretching vibrations, genetic studies of emeralds

Recent advances in portable instruments

- » Sequentially shifted excitation
- Suppression or elimination of fluorescence from the Raman spectra
- » Very useful for natural samples of minerals (REE, and other elements form fluorescence centers)

Conclusions

- » Portable Raman spectrometers are powerful tools for geoscience research
- » Applications include in-situ mineral identification at outcrops – a possible tool for mineral exploration, fast and non-destructive identification of gemstones, inorganic and organic pigments detection
- » Instruments are rapidly improving technologically -> greater scientific output, i.e. fluorescence suppression

Acknowledgements

Filip Košek

Peter Vandenabeele, Danilo Bersani, Jaroslav Hyršl, Howell G. M. Edwards...

References:

A. V. Korsakov, M. Perraki, D. A. Zedgenizov, L. Bindi, P. Vandenabeele, A. Suzuki and H. Kagi, *Journal of Petrology*, **2010**, 51, 763-783.

A. V. Korsakov, K. de Gussem, V. P. Zhukov, M. Perraki, P. Vandenabeele and A. V. Golovin, European Journal of Mineralogy, 2009, 21, 1301-1311.

F. R. L. Faulstich, H. V. Castro, L. F. C. de Oliveira and R. Neumann, 2011, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, **2011**, 80, 102-105.

P. Drahota, O. Kulakowski, A. Culka, M. Knappová, J. Rohovec, F. Veselovský and M. Racek, 2017, subm. to Applied Geochemistry

