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Petrophysics Overview

MagSus vs Density * Deposits with high density, high MagSus,
o Magnetiel dorieted I are dominated by coarse MD magnetite,

® Hematite-dominated

® Pyrrhotiteldominated e.g., Osborne, SWAN.

Pyrite-dominated

Comorant () g SWAN(HD * Deposits with high density, medium
i y K MagSus (e.g., Cormorant, Maronan) may
i‘ ‘.@«@“‘“ contain magnetite and pyrrhotite.
o N R * Horizons with high density, low MagSus,
B g e comern iver o contain hematite, e.g., Monakoff West BIF.
s © Canteen (Mt-Po)

® Monakolf Ore (Mt+Banite)

rréketano S ey * Deposits with high density negligible

( » Maronan (Po-Ga . . .
et | et |\ formorgat{Fo magnetization may contain hexagonal
. man (Hem ‘e o —1 Great Aust (Py-Cp) . . .
TRy et ey pyrrhotite and /or sphalerite, galena, pyrite
e i e and hematite,
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Petrophysics Overview

MagSus vs Remanence
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Avg Susceptibility

Deposits with high MagSus, and low Q
ratios are dominated by coarse MD
magnetite, e.g., Osborne, SWAN.

Deposits with low susceptibility, and high Q
are rich in monoclinic pyrrhotite, e.g.,
Cormorant, Canteen.

Deposits with low MagSus, and low Q may
contain hexagonal pyrrhotite, pyrite or
hematite.




Redox

Ultrareduced

These principles are relevant to Sedex deposits too

(magnetic Reduced Oxidised
Pyrrhotite)
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Sedex / BHT systems




Sedex Zonation

* produce bedding parallel magnetic anomalism.
* Redox controls the species of Fe-oxide, whereby
* Distal deposits are

e More oxidized (e.g., hematite £ magnetite).

e Have greater sediment content

e Subtle anomalies weakly magnetic

¢ Can have high Qratios (e.g., 13, in hematite BIF)
* Deposits proximal to the source are:

e More reduced (e.g., magnetite + pyrrhotite)

e Contain majority of economic metals

e Can have high MagSus in MD magnetite (proximal to source)

e Can have extreme remanence in Pyrrhotite (at the source)

Monakoff TMI

.

® Ore Zone

West BIF

Density Mag Sus Koenigsberger

Mongkout (gem’) K(SI)  Ratio (Q)
host rocks 2.81 0.0014 -

BIF West

(O 3.19 0.03 12.27
BIF East 419 032 1.54

(Qtz-Mt-Hem)

Ore (Mt-Cp-Py)  3.99 0.48 0.16

C5IRO



Monakoff
zonation

The ore zone:
totally recrystallized
barite-rich
magmatic signature
Cu and Pb-Zn

= Barite ancanosite @
W Quartz B [Undassified] M Eiotite I Barite - [ | Mangan.o.,lt:
B Hematite_Magretite Albite B Micodine B [Undassified] M sphalerite (@]
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B [Unclassified] B Hematite_Magnetite [l Calcite u ﬂdu = _ I Pyrite
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Monakoff overprinted by Magmatic fluids
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Pyrrhotite * Pb-Zn-Cu

* Pyrrhotite £ Pb-Zn-Cu assemblages occur
at Artemis, Altia and Maronan.

At Maronan it is located in the central
part of the mineralized zone.

* In the Sedex mineralization model the
central zone is the most reduced (e.g.,
pyrrhotite —rich

* Mineralisation occurs in the saddle
between the two large anomalies

w’g‘ﬁedex] BI

g‘.

I\;iaroﬁan —TMI

Maronan 1VD
Density Mag Sus  Koenigsberger
Margman | (Grendy | RSD Ratio (Q)
host rock 291 0.01 11.37
Po skarn 3.27 0.01 62.17
Potassic Alt  2.91 0.37 0.99

Sedex 3.71 0.62 331




Pyrrhotite melts

* These calcite—pyrrhotite assemblages
are sometimes referred to as “skarns”,

* But the core of the system has probably

just melted during peak metamorphism.

* The pyrrhotite in the core is associated
with main mineralization

|t is mainly non-magnetic (hexagonal)

* We infer that the pyrrhotite changes
crystal structure, from monoclinic to
hexagonal due to recrystallisation

Mt-rich | &8
proximal &

Po-rich
core |
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Mag vs Min - Maronan O T

* Magnetic zonation and mineral zonation are coupled
* Fe proximal, Pb from proximal to the core
e Zn and Silver occur mainly in the core of the system

Mag Sus (Magnetite) Silver




Iron Oxide Copper-Gold &
Iron Sulfide Copper-Gold
Systems




|IOCG & ISCG alteration systems

* hydrothermal mineralization: * Mineralization was associated

e Highly variable with a number of different

e 50 Ma Post-peak metamorphism alteration types:

e Synchronous with felsic e magnetite-apatite and the sodic
magmatism (+calcic) alteration

e Structurally controlled * Potassic Alteration

e Occurred during transition from * Pyrrhotite-Calcite Alteration
convergence to transpression then e Pyrrhotite-Albite Alteration
extension

e Quartz-Chlorite-Hematite
alteration (retrograde)




Magnetite-Apatite Alteration

* Magnetite-apatite assemblages are
common in I0CG-style deposits,
particularly Kiruna-type

* associated with extreme susceptibility,

 relatively minor, (viscous) remanence,
typical of multidomain magnetite.

* large magnetic anomalies

* The biggest include Osborne, and
Canteen (right)



Magnetite-Apatite Alteration

* Lots of coarse MD Magnetite

e Sample EHMOO5 from Ernest Henry had a
magnetic susceptibility of ~1.8 Sland a Q
ratio of ~0.5

— (NB: remanence is amplified by ~300%
due to DIM, so the in situ Q would be
0.1-0.2).

e Similar samples drilled from the pit at E1
had mean susceptibilities of 1.5 - 2.0 SI,
and Koenigsberger ratios of 0.1 — 0.2.

— NB: because these were surface
sampled, they are not affected by DIM.
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Radiometric Expression

475,000 m
480,000 mE

* Radiometric signatures of different alteration types

\
\

are not well understood

* There is a correlation between U-rich radiometric X Artemis

”

signatures and the highly magnetic zone at Canteen 7 4>Canteen

e The U-rich signature at Canteen is correlated with
magnetite-apatite alteration within that system

e U-rich radiometric signatures are also correlated
with sodic alteration at redox boundaries (as
discussed soon)

Dolerite

* Inthis image we can infer that the alteration may
be related to Magma Mingling

18 |




Sodic Alteration (albite-magnetite-titanite)

* manifested by albite-dominated lithologies Albite
. . . B Actnolte_Mg
* variable amounts of magnetite as the magnetic B (Undessified]
phase. B Quartz
. . L . . I Calote
* pervasive, particularly within calc-silicate dominated \ B Hematite_Magnette
units, but can be shear zone hosted or vein infill \ M Pyrite
| 1 | M Clinochlore
* Associated with moderate to high susceptibilities | E—— 0 W Apatite
| " N |
. . . . . - % |l Hornblende
Remanence is relatively minor, with Q ratios of ~0.1 v @
to 0.2 (after a DIM correction is applied). Titanite
. B Zussmanite
* Mag properties suggest moderate amounts of B Okood
coarse multi-domain magnetite. B Mcodine
M Magnesiogedrite

B Chalkcopyrite
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Potassic Alteration

* Present throughout the
Cloncurry district,

* Tends to be less pervasive
than sodic alteration.

* |t can be both magnetite and
pyrrhotite-destructive, e.g.,
via oxidation

e Can take two main forms:

e replacement of ferromagnesian
minerals by biotite

B Botite
Abite
B [Undassified)
B Hematite_Magnetite




Potassic Alteration

e and/or replacement feldspars
(e.g., Albite) by K- Feldspar

K-feldspar alteration is thought to
be associated with hematite
(based on the reddish color of the
K-feldspar).

However, magnetite is the
dominant magnetic phase in K-
feldspar altered lithologies,
assessed in this study.
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Quartz-calcite-chlorite-hematite alteration

* Late quartz-calcite-chlorite-pyrite-hematite
alteration is present in a number of deposits

* associated with copper and/ or
molybdenum at Ernest Henry, Canteen,
Kalman and Merlin

* most oxidized style observed in the
Cloncurry district, as indicated by the
presence of pyrite and hematite, rather
than pyrrhotite and magnetite

* mineralized samples (with such alteration)
sit below the magnetite trend on the
density/susceptibility plot.

* ironin magnetite is being converted to;

e ferromagnesian minerals (e.g., chamosite),

* chalcopyrite, pKrite and/or hematite during the
late alteration history.

[ ] Quartz

M clinochlore

[ ] Hematite_Magnetite

B [Undassified]

B chalcopyrite

B caldite

B Chamosite
Pyrite

B Magnesiogedrite

W apatite

B siderite

B rutie
Calcite_Fe

M Zussmanite
Caldoancylite

B Pyrrhotite
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Mineralised Pipe =" Hanging Wall Sheat y
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(0.8 54,32 g/ec)

* Mineralisation is mainly associated with
oxidation here

Magnetite
-~ Alteration Halo
10.251,28 g/cc)

e Mineralisation is associated with the most
weakly magnetic rocks

Footwall Shear <~
{14551, 3.3 g/ec)

Alteration type Chalcopyrite|Chamosite |Pyrite Albite Microcline |Quartz
And-Alb+Potassic+Calcic 0.00 0.82 0.27 7.41 23.54 10.56
Magnetite-Apatite* 3.80 1.84 1.09 1.09 1.09 1.09
Potassic (Bt) 0.00 0.29 0.07 58.79 2.80 8.48
Potassic (Kf) 0.25 2.27 3.38 2.52 45.91 8.22
Potassic+ Cal-Qtz-Py 2.00 1.19 4.03 0.96 31.62 15.88
Qtz-Cal-Chl-Py+CpptHem 2.88 10.26 13.96 0.16 2.70 33.56
Sodic (Ab-Mt-Ti) 0.00 0.31 0.31 54.96 3.73 2.38
Sodic + Potassic (Bt) 0.05 1.12 0.27 20.11 20.00 10.03




ISCGs (Pyrrhotite-rich Copper-
Gold deposits)




Pyrrhotite Assemblages

* Calcite -pyrrhotite assemblages
are present at a number deposits

e Canteen, Maronan, and Artemis;
e They don’t appear to be co-genetic. '_ '
* |In all cases, the textures are ¥
undeformed.
* However, some assemblages

e Formed in zones of dilation, e.g.,
veins and breccia matrix,

e others appear to have formed by
recrystallization. (already discussed)

Albite

M ryrrhotite

B calite

M [Undassified]

[ | Quartz

M siotite
Dolomite_Fe
Cligodase

M dinochlore

M chamosite

M Hornblende

M andesine

B ~patite
Calcite_Fe

M rutile
Dolomite

[ | Hematite_Magnetite

M Actinolite_mg
Pyrite

M chalcopyrite




Cormorant

mineralization is associated with

Albite
pyrrhotite in microbreccias and veins W Pyrhotite
. . . . . B [Undassified]
* Pyrrhotite is associated with albite, Titanite
. B Microdine
not calcite. -
. . . . | | W Apatite
* pyrrhotite, chalcopyrite & titanite are ’ / B s g
intergrown " | M Hornblende
) B quartz
* Mineralization is associated with - : e
. . . alcopyri
pyrrhotite-dominant vein phases B Chamosits
Cligodlase

[ | Hematite_Magnetite




Redox Boundary

Redox Control on Copper - |

S-ppm

* Elevated Cu occurs either side of an apparent redox — =

boundary at approximately 450 meters om0 Cu - ppm
* transition from magnetite dominant (400-425 m)
* into magnetite-pyrrhotite (425-450 m) - B » s
* into pyrrhotite dominant (450-500 m), ,' M\
* and then titanite dominant lithologies (500-550 m). | | |
* U-rich alteration sits on more oxidized side ‘ H'""' .
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Remanence in Pyrrhotite

* Monoclinic pyrrhotite in several of these deposits
(e.g., Canteen, Cormorant, Maronan, Mt Colin) is
associated with high Koenigsberger ratios.

* the associated remanence directions are generally
sub-vertical upward oriented magnetizations.

* are consistent with metamorphic resetting
associated with mafic magmas at ca 1114 Ma.

* The magnetizations are sub-vertical and sit in a N-S
plane in a similar orientation to the inducing Field.

* So they cause positive anomalies that can be easily
distinguished from other anomalies

* therefore we cannot easily use remanence asan
exploration tool to find pyrrhotite '







