

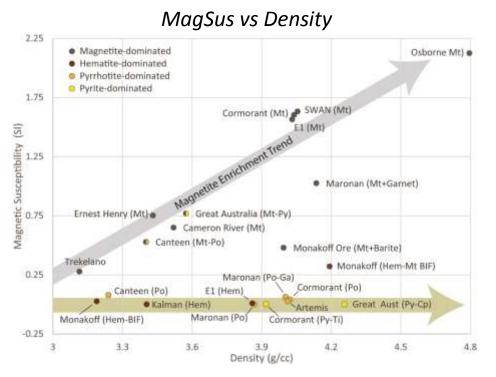
Geophysical Signatures of IOCG & Sedex/BHT style mineralization in the Cloncurry District, Qld.

Jim Austin| 26 October 2017

+ Ben Patterson, John Walshe, Renee Birchall, Monica leGras, Richard Lilly, Phil Schmidt, Clive Foss, Dean Hillan and Dave Clark

The "Curry"

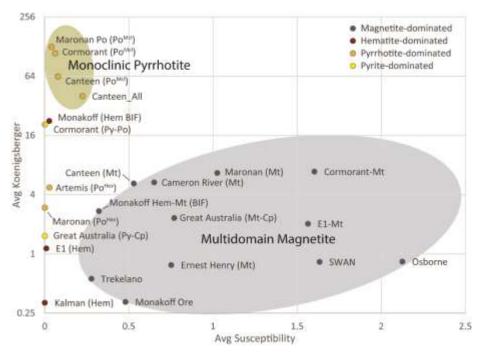
- The Cloncurry district is world renowned for IOCG mineralization, but:
- Mineralization styles are diverse, including:
 - Iron-Oxide Copper-Gold (IOCG)
 - Iron Sulfide Copper-Gold (ISCG)
 - Sedex / Broken Hill Type (BHT)
 - Skarns and Carbonate hosted deposits, Intrusion related Cu-Mo.



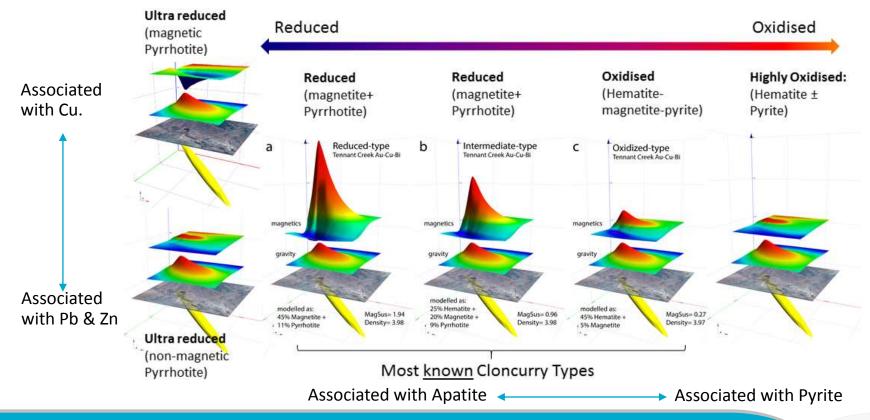
The "Curry"

- The deposits are both mineralogically and petrophysically diverse,
- Highly variable geochemical and geophysical expressions.
- Few deposits are monogenetic, many deposits formed via overprinting of two or more different ore forming systems,
- These occurred during (often interrelated) tectonic, metamorphic magmatic and metasomatic events (Fig 2).

Buria	1	Pa	ak Metamorp	which Dur	tile-Brittle Tran	ution Deformation
Porte			the state		TEAST T	dense a secondaria
CS ₃ (extension)		D,7	D	D,	Da Das	
	a de la composition d	-		-	and an other data	N
	Pega	matites/Ana	texis 🗱 🖇	1	Brucci	ation
Alteration	Sodica	(N.a-7)		Sodic-Calcic	Na-Ca	Potassic
			An	desine And		Calcic
			_			Qtz-Chl-Hematit
Le	wellyn Ck/ Ki Mt Noma Q Toole Ck	tz/ Staveley i	Fm			Deposition
Emest Henry		_	Maramunge	TTC		Magmatisn
Diorite Tor	nmy Greek	5axby		/Mt Margaret		Malakoff/Mavis
G	ranodiorite	1. 20.000	1. S. C. C. S. T. L. S. T.	/Ti Tree/Wind		SHG/YWG
Pb-Zn-Ag Sedex	ł	skarr	e(Zn-Pb-Cu) · v/pegmatite		Mt-Apatite	Po±(Cu-Au)±(Zn-Pb
Artemia 📑	Zn-Pb-Cu	D		D ₂	7 Calcic	D ₅ 7
Canteen 📑	Fe BiF (pro	Userniau	- D2 -	47 D, 20		D ₅
Cormorant			7	D3	KE.	D ₁
E1 Fe BIF	k		2	D3		
Emest Henry	1	3	7		10 M	
Monakoff	Fe BiF	Distant	💶 D ₂	$D_2 O$		
Maronan 🔰	Pb-Zn-Ag Sedex		••• D ₂ §	🕷 🎴	Ka 📷	D _{4.6}
Mt Colin			- D2	And And	- NE	
Kalman 🚽	Fe BIF		💼 D3		Ac-Act-MI MI	Otz-ON-Mu
Merlin			• D2	Acid	Ab KI	DEP-CN
Osborne 🔰	r fe BiF	Ditter		D3	Qiz-8t	
Starra 🔰	Fe BIF	D ₁ ?	D 2 (Mt-Cu Skarn	Ab-Act ME HI	
SWAN			••• D ₂	And		
				(Anna)	AD ACT MUST	Acres
Trekalano			••• D ₂	(Mind)	AD ACL AL DI	DLIR ARTIN


Petrophysics Overview

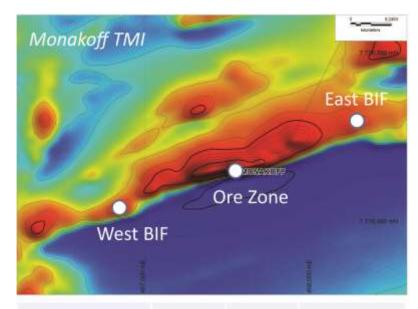
- Deposits with high density, high MagSus, are dominated by coarse MD magnetite, e.g., Osborne, SWAN.
- Deposits with high density, medium MagSus (e.g., Cormorant, Maronan) may contain magnetite and pyrrhotite.
- Horizons with high density, low MagSus, contain hematite, e.g., Monakoff West BIF.
- Deposits with high density negligible magnetization may contain hexagonal pyrrhotite and /or sphalerite, galena, pyrite and hematite,


Petrophysics Overview

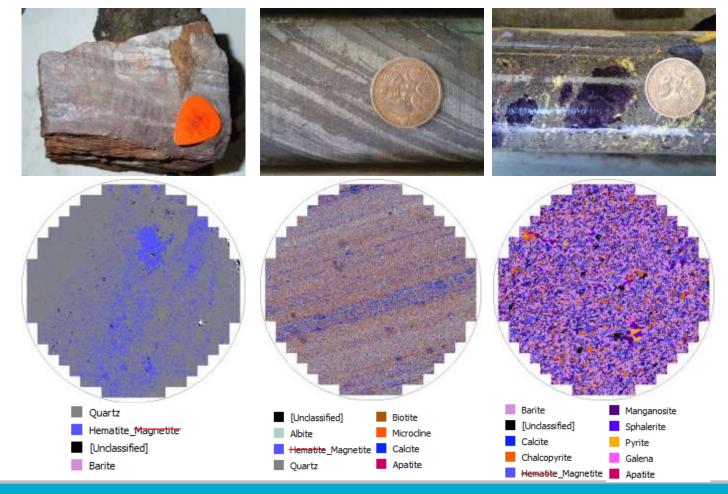
MagSus vs Remanence

- Deposits with high MagSus, and low Q ratios are dominated by coarse MD magnetite, e.g., Osborne, SWAN.
- Deposits with low susceptibility, and high Q are rich in monoclinic pyrrhotite, e.g., Cormorant, Canteen.
- Deposits with low MagSus, and low Q may contain hexagonal pyrrhotite, pyrite or hematite.

Redox These principles are relevant to Sedex deposits too



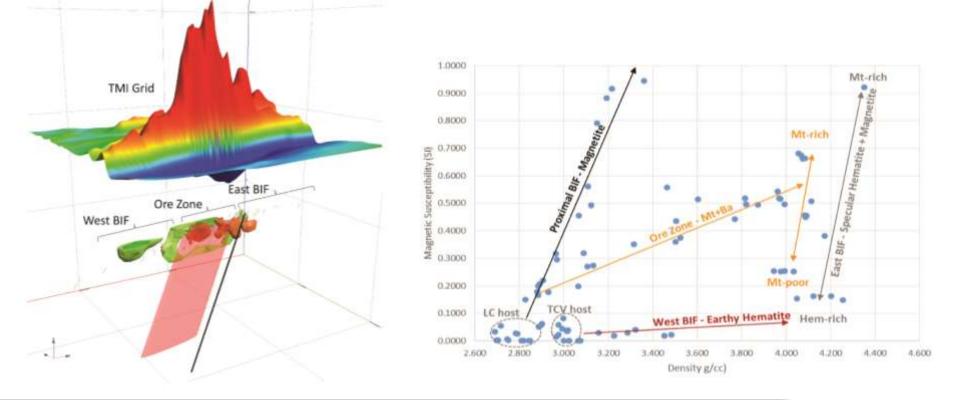
Sedex / BHT systems



Sedex Zonation

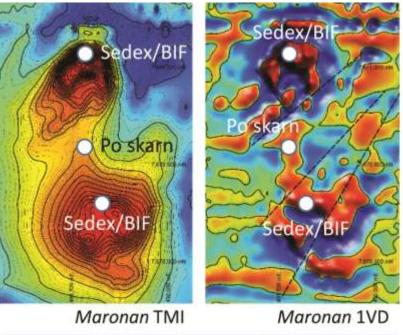
- produce bedding parallel magnetic anomalism.
- Redox controls the species of Fe-oxide, whereby
- Distal deposits are
 - More oxidized (e.g., hematite ± magnetite).
 - Have greater sediment content
 - Subtle anomalies weakly magnetic
 - Can have high Q ratios (e.g., 13, in hematite BIF)
- Deposits proximal to the source are:
 - More reduced (e.g., magnetite ± pyrrhotite)
 - Contain majority of economic metals
 - Can have high MagSus in MD magnetite (proximal to source)
 - Can have extreme remanence in Pyrrhotite (at the source)

Monakoff	Density (g/cm ³)	Mag Sus K (SI)	Koenigsberger Ratio (Q)
host rocks	2.81	0.0014	-
BIF West (Qtz-Hem)	3.19	0.03	12.27
BIF East (Qtz-Mt-Hem)	4.19	0.32	1.54
Ore (Mt-Cp-Py)	3.99	0.48	0.16


Monakoff zonation

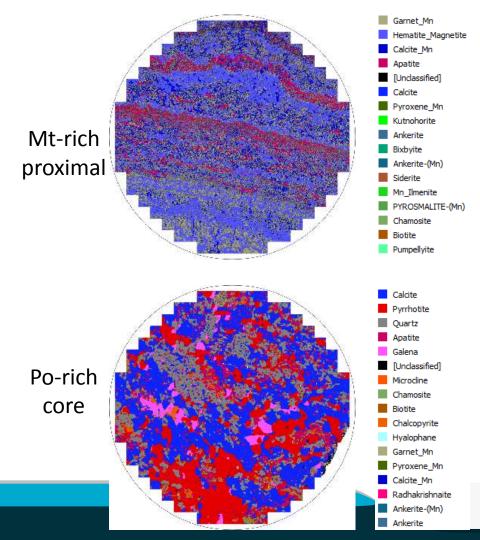
The ore zone:

- totally recrystallized
- barite-rich
- magmatic signature
- Cu and Pb-Zn

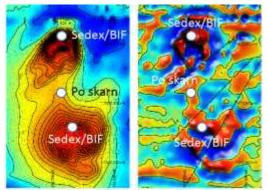


Monakoff overprinted by Magmatic fluids

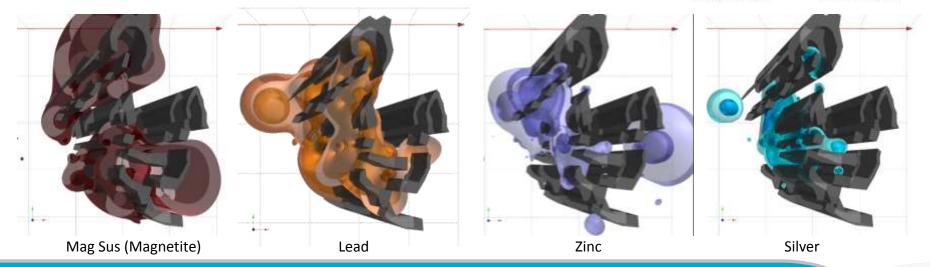
Pyrrhotite ± Pb-Zn-Cu


- Pyrrhotite ± Pb-Zn-Cu assemblages occur at Artemis, Altia and Maronan.
- At Maronan it is located in the central part of the mineralized zone.
- In the Sedex mineralization model the central zone is the most reduced (e.g., pyrrhotite –rich
- Mineralisation occurs in the saddle between the two large anomalies

Maronan	Density (g/cm ³)	Mag Sus K (SI)	Koenigsberger Ratio (Q)
host rock	2.91	0.01	11.37
Po skarn	3.27	0.01	62.17
Potassic Alt	2.91	0.37	0.99
Sedex	3.71	0.62	5.32


Pyrrhotite melts

- These calcite-pyrrhotite assemblages are sometimes referred to as "skarns",
- But the core of the system has probably just melted during peak metamorphism.
- The pyrrhotite in the core is associated with main mineralization
- It is mainly non-magnetic (hexagonal)
- We infer that the pyrrhotite changes crystal structure, from monoclinic to hexagonal due to recrystallisation

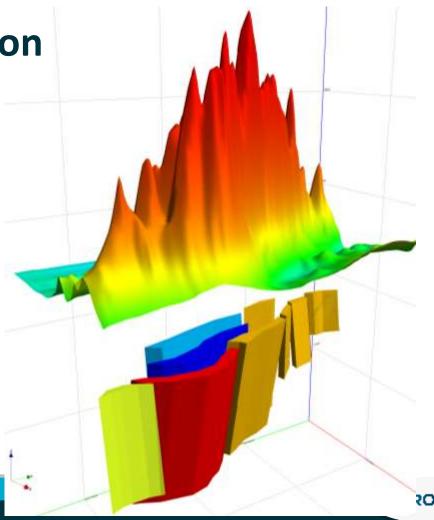

Mag vs Min - Maronan

- Magnetic zonation and mineral zonation are coupled
- Fe proximal, Pb from proximal to the core
- Zn and Silver occur mainly in the core of the system

Maronan TMI

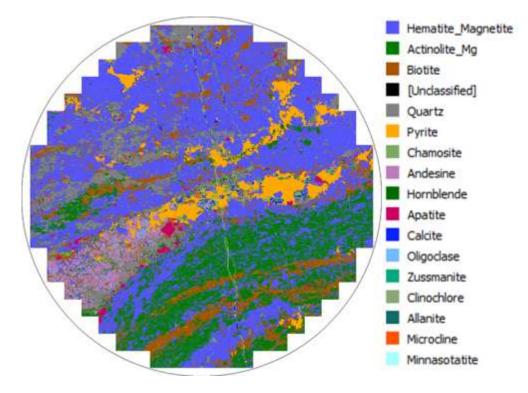
Maronan 1VD

Iron Oxide Copper-Gold & Iron Sulfide Copper-Gold Systems

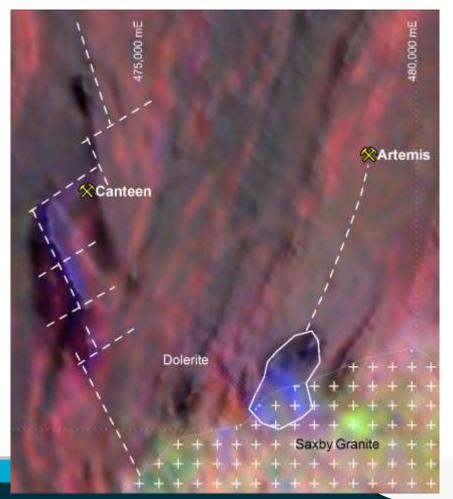

IOCG & ISCG alteration systems

- hydrothermal mineralization:
 - Highly variable
 - 50 Ma Post-peak metamorphism
 - Synchronous with felsic magmatism
 - Structurally controlled
 - Occurred during transition from convergence to transpression then extension

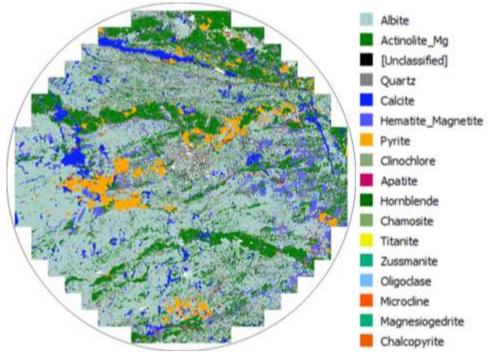
- Mineralization was associated with a number of different alteration types:
 - magnetite-apatite and the sodic (±calcic) alteration
 - Potassic Alteration
 - Pyrrhotite-Calcite Alteration
 - Pyrrhotite-Albite Alteration
 - Quartz-Chlorite-Hematite alteration (retrograde)


Magnetite-Apatite Alteration

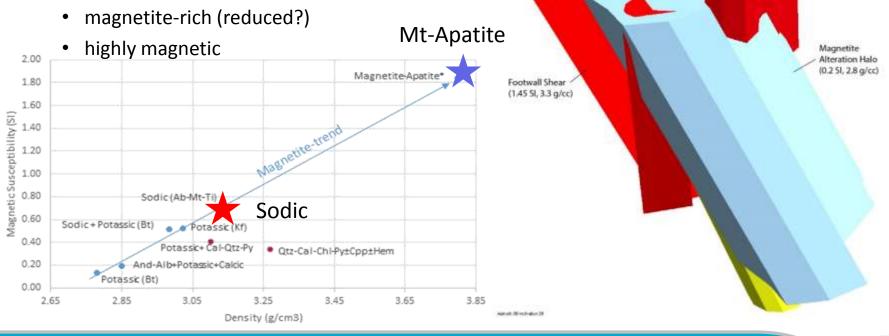
- Magnetite-apatite assemblages are common in IOCG-style deposits, particularly Kiruna-type
- associated with extreme susceptibility,
- relatively minor, (viscous) remanence, typical of multidomain magnetite.
- large magnetic anomalies
- The biggest include Osborne, and Canteen (right)


Magnetite-Apatite Alteration

- Lots of coarse MD Magnetite
 - Sample EHM005 from Ernest Henry had a magnetic susceptibility of ~1.8 SI and a Q ratio of ~0.5
 - (NB: remanence is amplified by ~300% due to DIM, so the *in situ* Q would be 0.1-0.2).
 - Similar samples drilled from the pit at E1 had mean susceptibilities of 1.5 – 2.0 SI, and Koenigsberger ratios of 0.1 – 0.2.
 - NB: because these were surface sampled, they are not affected by DIM.


Radiometric Expression

- Radiometric signatures of different alteration types are not well understood
- There is a correlation between U-rich radiometric signatures and the highly magnetic zone at Canteen
- The U-rich signature at Canteen is correlated with magnetite-apatite alteration within that system
- U-rich radiometric signatures are also correlated with sodic alteration at redox boundaries (as discussed soon)
- In this image we can infer that the alteration may be related to Magma Mingling


Sodic Alteration (albite-magnetite-titanite)

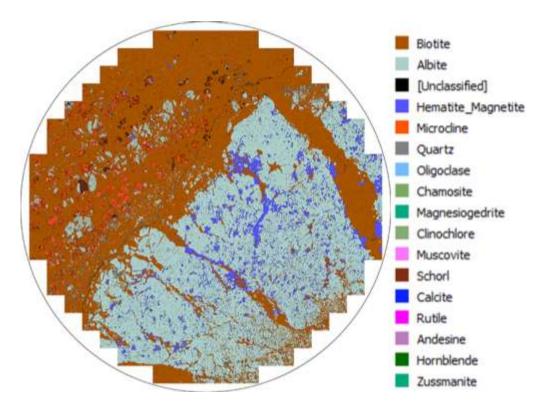
- manifested by albite-dominated lithologies
- variable amounts of magnetite as the magnetic phase.
- pervasive, particularly within calc-silicate dominated units, but can be shear zone hosted or vein infill
- Associated with moderate to high susceptibilities
- Remanence is relatively minor, with Q ratios of ~0.1 to 0.2 (after a DIM correction is applied).
- Mag properties suggest moderate amounts of coarse multi-domain magnetite.

Magnetic Modelling

- Shearzones (in red) are Sodic Altered
 - Have a strong consistent fabric

Mineralised Pipe

(0.15 SI, 2.9 g/cc)

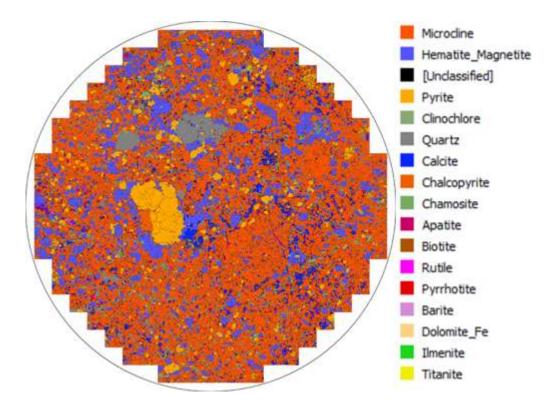

Hanging Wall Shea

(0.5 SI, 3.0 g/cc)

Marshall Shear Zone (0.8 SI, 3.2 g/cc)

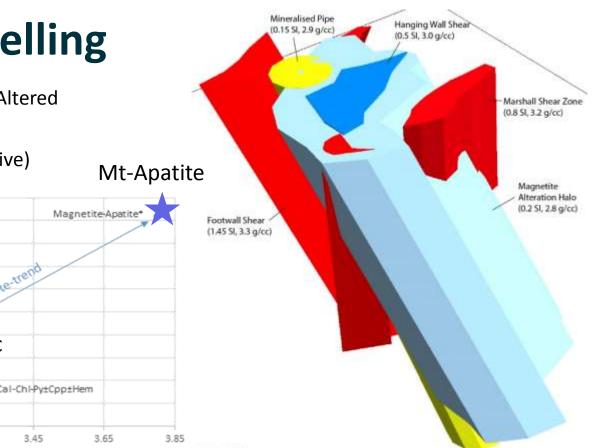
Potassic Alteration

- Present throughout the Cloncurry district,
- Tends to be less pervasive than sodic alteration.
- It can be both magnetite and pyrrhotite-destructive, e.g., via oxidation
- Can take two main forms:
 - replacement of ferromagnesian minerals by biotite



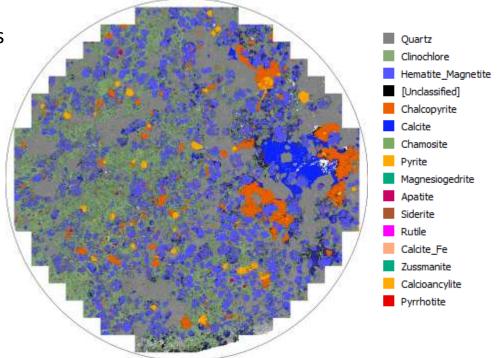
Potassic Alteration

• and/or replacement feldspars (e.g., Albite) by K- Feldspar


K-feldspar alteration is thought to be associated with hematite (based on the reddish color of the K-feldspar).

However, magnetite is the dominant magnetic phase in Kfeldspar altered lithologies, assessed in this study.

Magnetic Modelling


- Breccias (in blue) are Potassic Altered ٠
 - Moderately magnetic •
 - Isotropic (Fabric destructive) ٠

2.00 1.80 1.60 Magnetic Susceptibility (SI) 1.40 Magnetitetrend 1.20 1.00 Potassic 0.80 Sodic 0.60 Sodic + Potassic (Bt) otassic (Kf) Potassic Potassic+ Cal-Qtz-Pv Qtz-Cal-Chl-Py±Cpp±Hem And-Alb+Potassic+Calcic Potassic (Bt) 0.00 2.65 2.85 3.05 3.25 April 10 or 1 alter 16 Density (g/cm3)

Quartz-calcite-chlorite-hematite alteration

- Late quartz-calcite-chlorite-pyrite-hematite alteration is present in a number of deposits
- associated with copper and/ or molybdenum at Ernest Henry, Canteen, Kalman and Merlin
- most oxidized style observed in the Cloncurry district, as indicated by the presence of pyrite and hematite, rather than pyrrhotite and magnetite
- mineralized samples (with such alteration) sit below the magnetite trend on the density/susceptibility plot.
- iron in magnetite is being converted to;
 - ferromagnesian minerals (e.g., chamosite),
 - chalcopyrite, pyrite and/or hematite during the late alteration history.

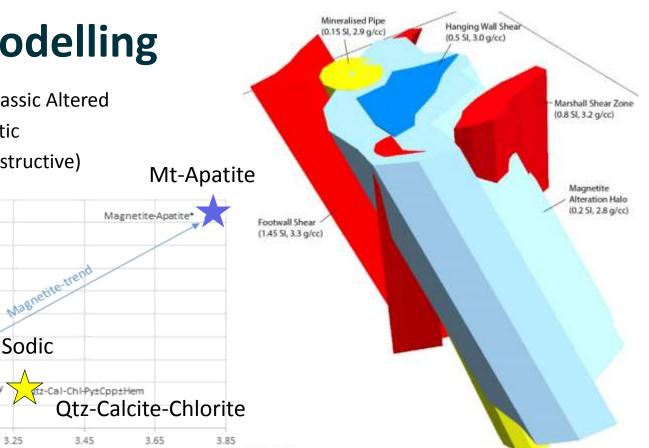
Magnetic Modelling

- Breccias (in blue) are Potassic Altered ٠
 - Moderately magnetic •

Potassic

Potassic (Bt)

2.85


Potassic

And-Alb+Potassic+Calci

3.05

Sodic + Potassic (Bt)

Isotropic (Fabric destructive) ٠

CSIRO

April 10 or instant 16

otassic (Kf)

Qtz-Py

3.25

2.00

1.80

1.60

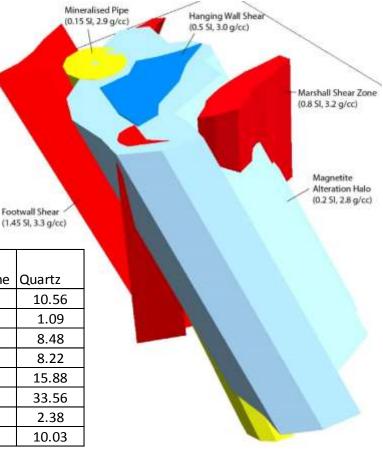
1.40

1.20 1.00

0.80

0.60

Potassic

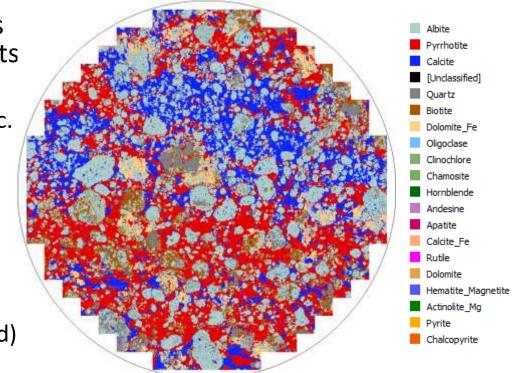

0.00 2.65

Magnetic Susceptibility (SI)

Inverse Bullseye

- Mineralisation is mainly associated with oxidation here
- Mineralisation is associated with the most weakly magnetic rocks

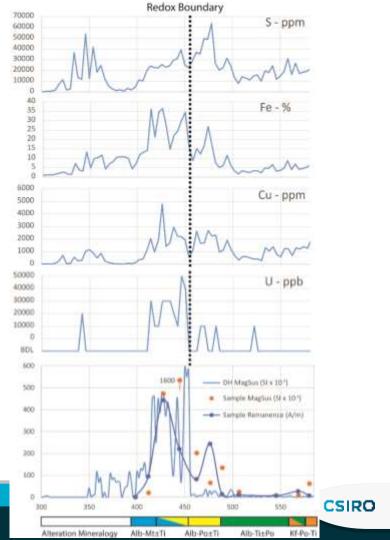
Alteration type						
Alteration type	Chalcopyrite	Chamosite	Pyrite	Albite	Microcline	Quartz
And-Alb+Potassic+Calcic	0.00	0.82	0.27	7.41	23.54	10.56
Magnetite-Apatite*	3.80	1.84	1.09	1.09	1.09	1.09
Potassic (Bt)	0.00	0.29	0.07	58.79	2.80	8.48
Potassic (Kf)	0.25	2.27	3.38	2.52	45.91	8.22
Potassic+ Cal-Qtz-Py	2.00	1.19	4.03	0.96	31.62	15.88
Qtz-Cal-Chl-Py±Cpp±Hem	2.88	10.26	13.96	0.16	2.70	33.56
Sodic (Ab-Mt-Ti)	0.00	0.31	0.31	54.96	3.73	2.38
Sodic + Potassic (Bt)	0.05	1.12	0.27	20.11	20.00	10.03



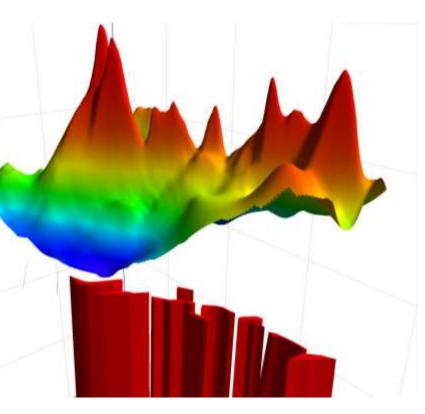
ISCGs (Pyrrhotite-rich Copper-Gold deposits)


Pyrrhotite Assemblages

- Calcite -pyrrhotite assemblages are present at a number deposits
 - Canteen, Maronan, and Artemis;
 - They don't appear to be co-genetic.
- In all cases, the textures are undeformed.
- However, some assemblages
 - Formed in zones of dilation, e.g., veins and breccia matrix,
 - others appear to have formed by recrystallization. (already discussed)


Cormorant

- mineralization is associated with pyrrhotite in microbreccias and veins
- Pyrrhotite is associated with albite, not calcite.
- pyrrhotite, chalcopyrite & titanite are intergrown
- Mineralization is associated with pyrrhotite-dominant vein phases


Redox Control on Copper

- Elevated Cu occurs either side of an apparent redox boundary at approximately 450 meters
- transition from magnetite dominant (400–425 m)
- into magnetite-pyrrhotite (425–450 m)
- into pyrrhotite dominant (450–500 m),
- and then titanite dominant lithologies (500–550 m).
- U-rich alteration sits on more oxidized side

Remanence in Pyrrhotite

- Monoclinic pyrrhotite in several of these deposits (e.g., Canteen, Cormorant, Maronan, Mt Colin) is associated with high Koenigsberger ratios.
- the associated remanence directions are generally sub-vertical upward oriented magnetizations.
- are consistent with metamorphic resetting associated with mafic magmas at *ca* 1114 Ma.
- The magnetizations are sub-vertical and sit in a N-S plane in a similar orientation to the inducing Field.
- So they cause positive anomalies that can be easily distinguished from other anomalies
- therefore we cannot easily use remanence as an exploration tool to find pyrrhotite

