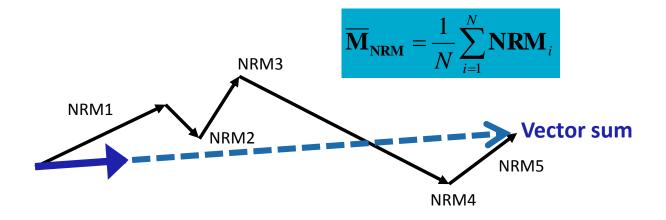


Estimating total and remanent magnetization of geological sources

David Clark*

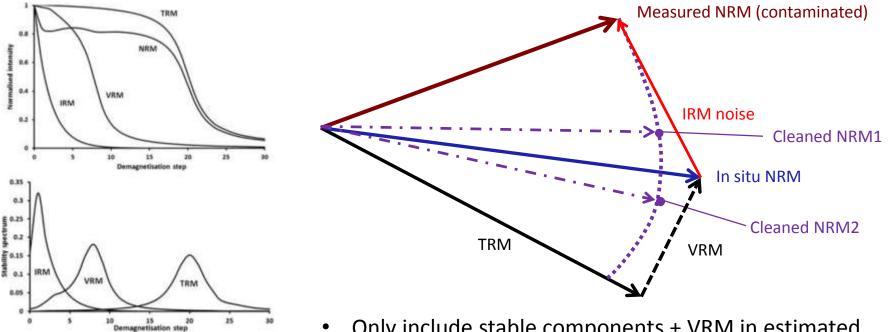
CSIRO SUPERCONDUCTING DEVICES AND SYSTEMS GROUP/CSIRO MINERALS

Workshop 8: "Improving Exploration with Petrophysics: The Application of Magnetic Remanence and Other Rock Physical Properties to Geophysical Targeting"


Methods discussed (briefly!)

Clark, 2014. Methods for determining remanent and total magnetisations of magnetic sources - a review. Exploration Geophysics, 45, 271–304.

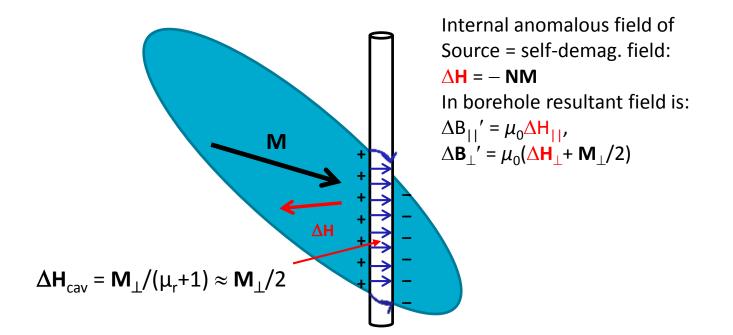
- 1. Sample measurements
- 2. Borehole measurements
- 3. Constrained modelling/inversion of magnetic sources
- 4. Simple direct inversions of measured or calculated vector and gradient tensor data for compact sources
- 5. Helbig-type analysis
- 6. Dual vector magnetometers or a single combined gradiometer/ magnetometer in base station mode
- 7. Combined analysis of magnetic and gravity anomalies using Poisson's theorem
- 8. Active source magnetics
- 9. Inference from petrography, supplemented by palaeomagnetic databases


Sample measurements – correct averaging of remanence vectors

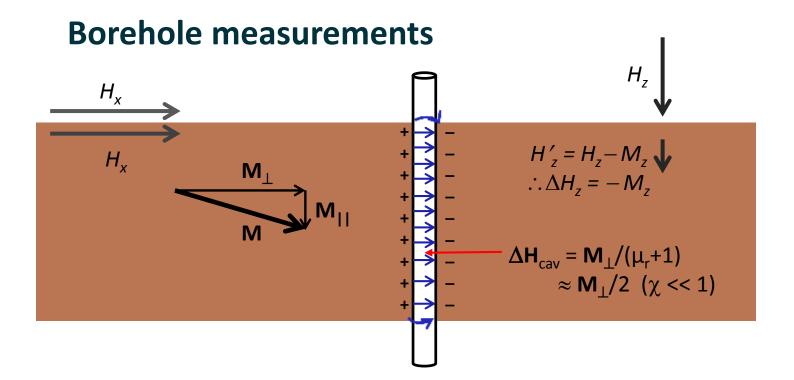
- DON'T average NRM intensities (irrespective of direction, or even polarity!!)
- DON'T average Koenigsberger ratios (calculate Q from correctly averaged NRM and average susceptibility)

Sample measurements

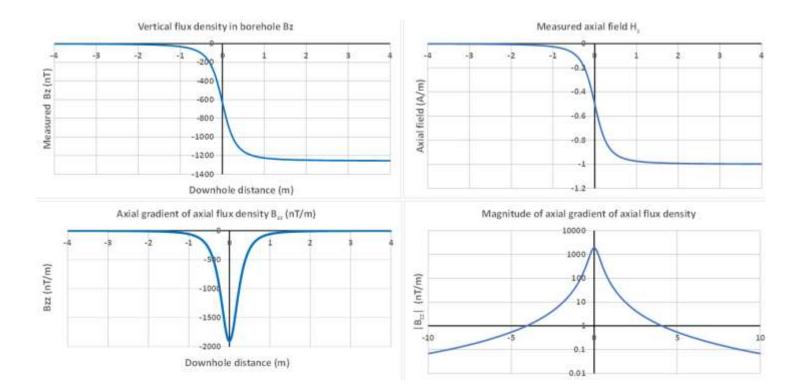
• Only include stable components + VRM in estimated remanent magnetisation of source



Sample measurements


ASSUMPTIONS/RESTRICTIONS /REQUIREMENTS	INFORMATION PROVIDED	LIMITATIONS
 Representative sampling Sufficient sampling NRM uncontaminated or cleanable Adequate statistical analysis and appropriate treatment of vectors 	k or K M _{IND} M _{NRM} M Q	 •Unavailability of samples •Available samples unrepresentative •Remanence contaminated •Weathering •Heterogeneity, nugget effect •Requires sophisticated equipment for complex NRM

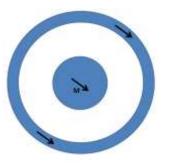
Borehole measurements



Borehole measurements

ASSUMPTIONS/RESTRICTIONS /REQUIREMENTS	INFORMATION PROVIDED	LIMITATIONS
Uniform properties within	k *	•Source geometry may
intersected source	M _{IND} *	be unknown (possibly
 Layered earth with known 	M _{NRM}	can be modelled by
dips, or known shape of	Μ	external measurements)
intersected source	Q	•Orientation noise on
 Hole intersects source(s) 		vector measurements
	* If susceptibility	•Noisy vectors due to
	is logged	heterogeneity and
	downhole or	rugosity
	measured on	
	core	

Borehole measurements


Why inversion often works/what about non-uniqueness?

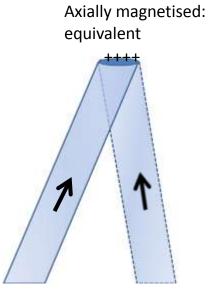
- Non-uniqueness is an important issue *but* its importance is often exaggerated
- Classic cases of *theoretically* equivalent sources are generally very artificial
- Some parameters are uniquely defined, even if source is ambiguous *magnetisation direction is generally robust*
- Any constraints from other data or geological plausibility drastically reduce ambiguity

Strictly equivalent sources with unique magnetisation direction and total moment

Equivalent shells – equivalent even when |**M**| specified

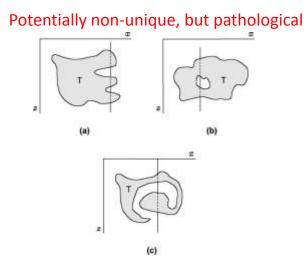
Equivalent confocal ellipsoids – *unique when* |**M**| *specified*

Equivalent lenses – unique when |**M**| specified

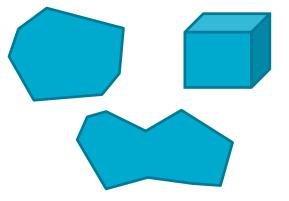

Strictly equivalent sources

Equivalent shells: 2D or 3D (*even if* |**M**| *specified*) Equivalent lenses : 2D or 3D (*but have different* |**M**|) Equivalent dipping sheets: 2D (semi-infinite) Equivalent sloping step/dipping sheet: 2D (semi-infinite)

Equivalent and non-equivalent plugs

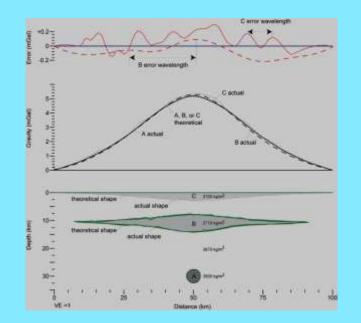


Transversely magnetised: non-equivalent


> Plunge & **M** [wide body] or **M**A [narrow plug] determinable

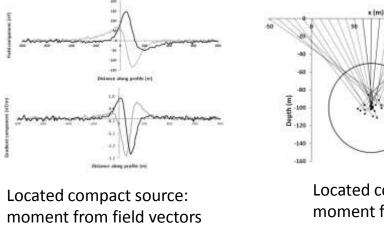
Non-uniqueness of pathological sources vs uniqueness of simple polygons/polyhedra

Theoretically unique geometry *and* magnetisation



What about non-uniqueness?

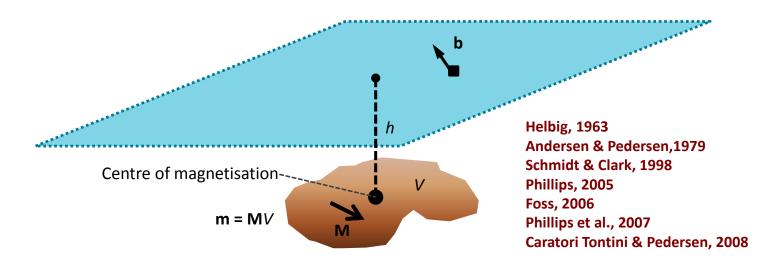
I recommend:


Saltus, R.W. and Blakely, R.J., 2011, Unique geologic insights from "non-unique" gravity and magnetic interpretation: GSA Today, 21(12), 4-11

for a common-sense view.

Simple direct inversions of vector or tensor data Clark, EG, 2012

$$\mathbf{m} = \frac{r^3}{C} \left[\frac{3\mathbf{b} \cdot \mathbf{r}}{2r^2} \, \mathbf{r} - \mathbf{b} \right],$$


Located compact source: moment from tensors

$$\mathbf{m} = \frac{r^4}{3C} \left[\mathbf{B}\hat{\mathbf{r}} - \frac{3}{2} (\hat{\mathbf{r}}^T \mathbf{B}\hat{\mathbf{r}}) \hat{\mathbf{r}} \right].$$

Helbig analysis – what is it?

• Based on integral moments of magnetic vector components over observation plane

Helbig analysis – for *finite isolated source*

- Can be applied to gradient tensor components *and to invariants derived from the tensor*
- Provided regional trends are removed and correct base levels are known, Helbig analysis ⇒ magnetic moment vector

Helbig analysis \Rightarrow average direction of magnetisation

Helbig analysis \Rightarrow location of centre of magnetisation

These parameters are determined uniquely, *independently of the source* geometry

$$\mathbf{m} = \overline{\mathbf{M}}V = \int_{V} \mathbf{M}dV$$

 $\hat{\mathbf{M}} = \hat{\mathbf{m}} = \mathbf{m} / m$

Helbig Analysis

CAVEATS/LIMITATIONS	MITIGATION
Source cannot extend beyond survey area or to great depth	Select relatively isolated sources, with dipolar character (or do analysis on vertical derivatives)
Requires measurements over whole extent of anomaly to determine moment magnitude	Correct finite integrals for missing tails (requires depth estimate)
Interference from neighbouring sources can invalidate the method	Restrict window and correct for missing tails; analyse gradient components and tensor invariants
Regional trends bias results	Remove regional trends prior to analysis
Base levels must be known	Remove average values of components across integration area

Helbig Analysis – vector components

• Base levels from:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} B_x dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} B_y dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} B_z dx dy = 0$$

• Magnetic moment:

$$\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xB_{x}dxdy = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yB_{y}dxdy = -2\pi Cm_{z},$$

$$\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xB_z dxdy = -2\pi Cm_x; \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yB_z dxdy = -2\pi Cm_y,$$

Helbig Analysis – tensor components

• Base levels from:

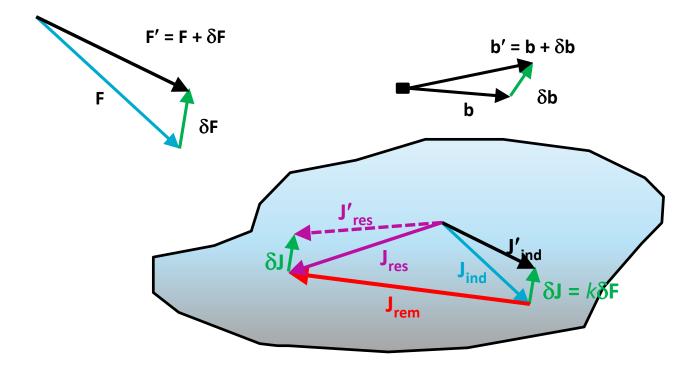
$$\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}B_{ij}dxdy = 0, \quad i, j = x, y, z$$

• Magnetic moment:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 B_{xx} dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^2 B_{yy} dx dy = 2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy B_{xy} dx dy = 4\pi C m_z,$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 B_{xz} dx dy = 2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy B_{yz} dx dy = 4\pi C m_x,$$

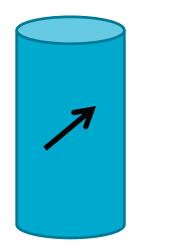
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^2 B_{yz} dx dy = 2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy B_{xz} dx dy = 4\pi C m_y.$$

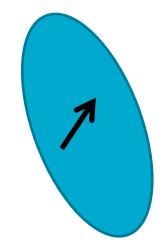


Properties and strengths of Helbig Analysis

- Independent of *finite* source shape and heterogeneity
- Uses all data within anomaly \Rightarrow averages noise
- Total moment \Rightarrow indication of source size (if |M|assumed)
- Total moment \Rightarrow indication of magnetisation intensity \Rightarrow lithology (if source size constrained)
- Magnetisation direction is robust, even for small integration windows
- Magnetisation direction can provide indication of strong remanence \Rightarrow indication of mineralogy/lithology

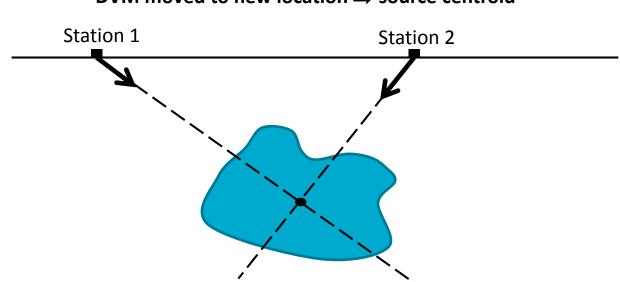
 \Rightarrow possible age of magnetisation



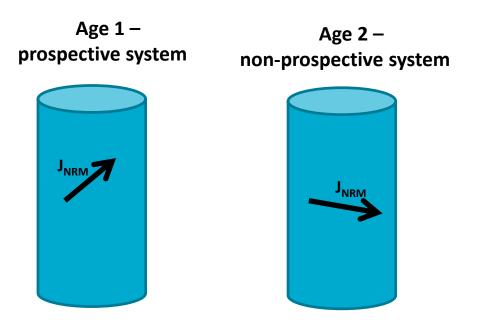


Discrimination of geologically different targets with similar magnetic signatures

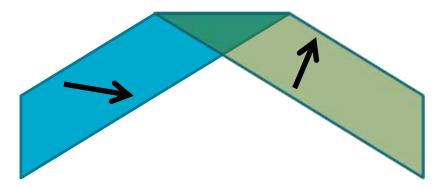
MD magnetite-bearing igneous plug Q ~ 0.5



Pyrrhotite-bearing sulphide orebody Q ~ 10


Drill hole targeting – directions to source from DVM

DVM moved to new location \Rightarrow source centroid


Discrimination of intrusions (or other magnetic bodies) of different ages

Disambiguation of non-unique models

- Body 1 and body 2 produce identical anomalies \Rightarrow dip is ambiguous if magnetisation direction is unknown
- DVM \Rightarrow resultant magnetisation direction \Rightarrow resolves dip
- DVM \Rightarrow Q \Rightarrow indicative of magnetic mineralogy
- DVM \Rightarrow remanence direction \Rightarrow indicative of magnetic age

ASSUMPTIONS/RESTRICTIONS/ INFORMATION PROVIDED REQUIREMENTS Assumes ~homogeneous source Compact 2D source: $\mathbf{M}_{\perp}A$, $\mathbf{M}_{\perp}/|\mathbf{M}_{\perp}|$, \mathbf{M}_{\perp}/k , Assumes induced magnetisation is $(\mathbf{M}_{\perp})_{\text{NRM}}/k$, $(\mathbf{M}_{\perp})_{\text{NRM}}/|(\mathbf{M}_{\perp})_{\text{NRM}}|$, Q, centroid parallel to inducing field (deflection due to anisotropy or self-demagnetisation Compact 3D source: $\mathbf{m} = \mathbf{M}V, \mathbf{M}/|\mathbf{M}|, \mathbf{M}/k$, requires multiple stations) $\mathbf{M}_{\rm NRM}/k$, $\mathbf{M}_{\text{NRM}} / |\mathbf{M}_{\text{NRM}}|, Q$, centroid Arbitrary 2D source: \mathbf{M}_{\perp}/k , $\mathbf{M}_{\perp}/|\mathbf{M}_{\perp}|$, $(\mathbf{M}_{\perp})_{\text{NRM}}$ /k, $(\mathbf{M}_{\perp})_{\text{NRM}}/|(\mathbf{M}_{\perp})_{\text{NRM}}|$, Q, centroid

Arbitrary 3D source: M/k, M/|M|, M_{NRM}/k , $M_{NRM}/|M_{NRM}|$, Q, centroid

Conclusions

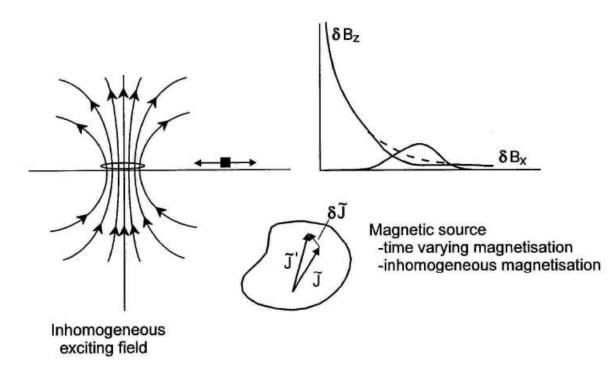
- There are many different approaches to characterising properties of magnetic sources
- These methods are largely complementary
- The practicality of each method depends on access to samples or to geophysical data
- Each method has its strengths and weaknesses
- Even partial information provides useful constraints on interpretation

Thank you

CSIRO Materials Science & Engineering/ CSIRO Earth Science & Resource Engineering David Clark

- t +61 2 9413 7046
- e david.clark@csiro.au
- w https://wiki.csiro.au/confluence/display/cmfr/Home

MINERALS DOWN UNDER FLAGSHIP www.csiro.au



Combined magnetics and gravity (based on Poisson's relation)

ASSUMPTIONS/RESTRICTIONS/ REQUIREMENTS	INFORMATION PROVIDED	LIMITATIONS
 Assumes common source for magnetic and gravity anomalies (shape does not need to be known) Assumes homogeneous density and magnetisation, or at least constant M /p and constant direction of M 	Μ /ρ Μ/ Μ	 Sources of gravity and magnetic anomalies are often not identical Density contrast or M may be insufficient to generate anomaly that can be accurately separated from background trends and noise

Active source magnetics

Active source magnetics

ASSUMPTIONS/RESTRICTIONS/ REQUIREMENTS	INFORMATION PROVIDED	LIMITATIONS
 Roving primary source field is accurately known across survey area Measurements are made sufficiently long after switching primary field that eddy currents in subsurface have decayed 	k M _{IND} M _{NRM} M Q	• Rapid fall-off restricts method to shallow sources, with tradeoff between depth of penetration and spatial resolution of subsurface magnetisation distribution

