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Introduction

Magmatic Ni-PGE deposits are
magnetically complex styles.

Exploration has been focused
on layered intrusions, e.g., the
Bushveld Complex

However, recent work
suggests Ni-PGE deposits are
associated with specific
intrusion types:

¢ chonoliths,

e bladed-dykes and

e funnels

These acted as high-
throughput magma conduits
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Magmatic Ni-PGE systems

* Rocks are compositionally diverse,

» Strong, stable and often complex
remanent magnetization,

* Held in magnetite, titanomagnetite and
pyrrhotite.

* We look at case studies from central
and NW Australia, and examine FOUR
processes that control remanence in
magmatic Ni-PGE systems:

How does the process of fractional
crystallization influence magnetic
properties in mafic rocks?

How is extremely strong and stable
remanent magnetization formed in
mafic rocks?

How can completely different mafic
rocks have identical remanence
directions?

How can almost identical rocks have
completely different magnetic
signatures?




How does the process of
fractional crystallization
influence magnetic
properties in mafic rocks?




Fractional Crystallization

* orthopyroxene, clinopyroxene and olivine

* removal and segregation of crystals from a melt, typically crystalize early
* which sink to form a cumulate at the base of the e forming pyroxenite and dunite.

Intrusion, . . * The exact minerals precipitated vary, based on
* thus changing the composition of the magma. the composition of the magma,

Magma has composition A s~ [agma has composition |
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Mt Caroline Intrusion

* 5individual drill holes were sampled:

e W2: lowermost basal unit,

W15: upper part of the basal unit,

C5: the highly magnetic mid - upper unit

e The results are discussed sequentially from the
base of the to the middle to upper layers

C2 and C4 sample the more weakly magnetic parts.

Middie-U




Basal Layers: density
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Basal Layers: magnetics

Lower Basal Upper Basal

* Lowermost basal units are weakly magnetic

« Some samples had elevated susceptibility 250 - /
and remanence

500
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:

e contain significant pyrrhotite - 1

e This probably means Sulphur saturation has :
happened e \

Magretic Susceptibibty (x10*51)
o
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* In the majority of samples,
e the magnetization is low coercivity (soft); \ e L
e Held in multi-domain (MD) 0 — S —
. . 0 100 200 100 &0 500 €00 o 800 0 100 200 300 400 500 o0 700 8O0
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Middle - upper Layers

» As fractional crystallization continues
the magma becomes increasingly felsic,

* precipitation of pyroxenite ceases.

e Gabbronorites are interlayered with

S
plagioclase and magnetite-rich units a2 e

¢ leucogabbro, leucogabbronorite, and
anorthosite.

e Magnetite-precipitation is triggered by
episodic increases in f,, (oxygen fugacity).

* In some layered intrusions magnetite
can be semi-massive,

e e.g., the Bushveld Complex

* In Mt Caroline, magnetite is relatively
disseminated, occurs with plagioclase.
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Upper Mt-rich Horizons (Susc vs Density)
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Upper Mt-poor Units
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Upper Mt-poor Horizons (Remanence)
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Upper Mt-poor Horlzons (Remanence)
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Upper Mt poor Horlzons (Remanence)
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Conclusions

* Fractional crystallization causes a decrease in
density toward the top of a layered intrusion

 also plays a role in determination of the magnetic
properties of a layered intrusion.

e At Mount Caroline

e the lower layers are weakly magnetic

— Bi-modal density due to pyroxenites
e the middle layers switch between:

— strongly induced layers (+'ve)

— and strongly negative remanence

Magnetic Model




How is extremely strong and
stable remanent magnetization
formed in mafic rocks?
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Mt Ha rcus  More homogeneous the Mt Caroline
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Remanent Magnetisation
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Demag behavior

High intensity remanence (<60 A/m)
Remanence is very stable

Consistent with single domain
magnetite

Minimal intensity loss right up to the
curie point

Not demagnetized Alternating Field of
140mT

The extreme stability is due to
lamellar crystal structure

Remanent Magnetisation (mA/M)

Remanent Magnetisation (mA/m)
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How does it form?

* Titanomagnetite crystallises at high
temperatures (~1300°C)

* Asitcools (at ~¥580°C) it will exsolve
into Ti-rich and Ti-poor minerals, e.g.,
magnetite and ilmenite.

* The resulting partitioning of the
magnetite grains can lead to more
extreme remanence in the rock.




Exsolution Lamellae

++++++++++++++++

* Remanence in SD
magnetite is very stable.

* Elongate, platy grains can
have extreme remanence

* They have a high ratio of : &
Surface dared to VOlumel Densely packed exsolution lamellae of titano-magnetite (light grey), in

an ilmenite host (mid grey). The black phase is magnesium spinel, the

* hence hold more charge brilliant white blebs appear to be baddleyite (2r0,). From:

www.greenelectron-images.co.uk



http://www.greenelectron-images.co.uk/

Remanence Directions

* Quite a spread of data

e But unlike Mt Caroline well
clustered

* Implies that the remanence
is resistant to metamorphic
overprints

 Remanence oriented Dec:
320, Inc: 49




How does this change our model?

Unconstrained K and J constrained




Implications

C “Expo-Savannah Type” -
blade shaped dyke D Marginal gabbro

- Gabbro (norite)
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How can completely different
mafic rocks have identical
remanence directions?




Curie Point

Generally, we assume that rocks acquire magnetization
very soon after crystallization.

Rocks can record a number of different magnetizations,
including cooling and/ or exsolution reactions.

However, we often fail to consider that the most
critical factor that controls the magnetization direction
is when the rock cools through the Curie point.

e The Curie point is different in different types of minerals

e For pyrrhotite the Curie point is much lower, which is significant
for metamorphic events in particular.

Magnetization(s) may take hundreds of millions of
years to be acquired

¢ rocks were intruded deep in the crust (e.g., >20km),

¢ tectonically moved into the mid-lower crust.

Mag Sus
Mineral Formula (§I) Q Curie point
Magnetite 3+ _ 24

3.8-10.0 |0.05-0.5| 580°C
(MD) Fe ' ,Fe" O,
Maghemite Fe203 variable | 0.05-0.5 | 545-675°C
[Imenite Fe,TiO; 0.03-3.5 ? 50-300°C
Pyrrhotite ) .

. Fe;Sg variable 1-500 320°C

(m-clin)
Hematite Fe*,0, [0.0005 - 0.01| 30-1000 |  685°C
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Magnetic Anomalies

Lloyd Suite 405 Ma Kalkarinji Suite 500 Ma Warakurna Suite 1070 Ma




Polar Wander Path
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Metamorphic Events
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Remanence and exhumation

Different parts of the Musgrave (and Arunta) were: ’ l l l
1. Exhumed at different times - .
2. Variably metamorphosed . Eusgravian
The acquisition of magnetisation is: 6 - e
1. Spatially Variable and Temporally Variable |>J
?

2. But it all post-dates the Petermann orogeny

Petermann
Orogeny
560 - 520 Ma

3. All rocks cooled through ~600°C during exhumation

from 530 Ma to ~310 Ma
4. None of the remanence was acquired during \

crystallization ]

From: Scrimgeour & Close, 1999
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How can almost identical rocks
have completely different
magnetic signatures?




Savannah Study

e Savannah and Dave Hill are
contemporaneous intrusions.

* Dave Hill associated with a large
negative Magnetic Anomaly

e Savannah essentially has no significant
magnetic anomaly

* What’s going on??
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Dave Hill Intrusion

Measured Remanence directions Constrained Model based on Remanence directions
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Savannah

p 1

e The NRM for Savannah was low

e Samples contained two

2
antiparallel magnetizations of
approximately equal intensity 5
 the weaker was removed first leaving =
a progressively stronger resultant. il
- )
e The stronger one was so stablethat ¢ =« — %/
. . . 9 ¢ 5l 05599
the highest remanent magnetization ~ \RVQ\M"
intensity occurs on the last step. s L2 >

weak, moderate coercivity




Implications

* high coercivity opposite polarity magnetizations * When Remanence is re-calculated based on not
often account for <10% of total magnetization. scalar sum of remanent intensities,
* In this case the two components e NRM was 15x higher than measured
e account for ~95% of the palaeomagnetic signal * Koenigsberger ratio would be 4.2.
e have approximately equal intensity, * These results are more consistent with those
from Dave Hill

e They are effectively self-cancelling

Savannah is a rare case in which the lithologies have
strong remanence and weak susceptibility, but
because the remanence is largely self-cancelling,
the magnetic anomaly at Savannah is non-existent.

* Koenigsberger ratios are misleading in terms of
describing the strength of the remanence







Modelling Implications - Gravity

* Fractional crystallization causes a decrease
in density toward the top of a layered
intrusion

Basal Layers (Pyroxenite/Gabronorite)

* Bi-modal density related to the
plagioclase/pyroxene ratio

Middle to Upper Layers

e Bi-modal density related to Mt-saturation




Modelling Implications - Magnetics

Mt-poor Layers (e.g., Gabbronorites)

In situ remanent magnetization is very stable.
5-15 times stronger than induced

Multiple components, but

Oriented opposite to the local magnetic field.

such rocks can essentially be treated as a negative
susceptibility.

Mt-rich Layers (e.g., Anorthosites)

The in situ remanent magnetization would almost certainly
have been parallel to the local magnetic field.

The remanence is artificially enhanced by ~300%
e drilling induced magnetization (DIM) discussed later today.

such rocks can essentially be treated as a purely induced
magnetization for modelling purposes.

intensities will be ~50% to 200% higher than measured
magnetic susceptibility.

Magnetic Model
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Polar Wander Path
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Polar Wander Path 7S
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