

Crystal-scale magnetic anomalies revealed by scanning magnetic microscopy

Nathan Church*, Suzanne McEnroe NTNU, Trondheim, Norway

Workshop 8: "Improving Exploration with Petrophysics: The Application of Magnetic Remanence and Other Rock Physical Properties to Geophysical Targeting" Workshop 8: "Improving Exploration with Petrophysics: The Application of Magnetic Remanence and Other Rock Physical Properties to Geophysical Targeting"

- Scanning magnetic microscopy doesn't directly address "Geophysical Targeting"
- In some ways, is opposite of exploration: location of sources can be known, and goal is absolute measurement of magnetic intensity & direction
- Field is still learning to apply processing techniques from the exploration community (input welcome)

Outline

- Motivation for micron-scale "aeromagnetic surveys"
- Scanning magnetic microscopes (SMMs): how it works
- Features of our implementation of SMM
- Initial results and possible experiments

Sources of remanent & induced signals can be complicated

130° E

129.5° E

Backscattered SEM

Plane-polarised light

Whole-rock measurements with few mineralogical constraints Partial solution:

0.2 Δ IRM (H_a,H_b) (µAm² et al.,

Strict mineralogical constraints: Nanoscale observations and models

Magnetic imaging (TEM and MFM)

Modelling at nanometer length scales

(Lappe *et al.,* 2011)

Nanoscale processes

Bridging the gap

Scanning magnetic microscopy:

100 nm

1 µm

10 nm

measuring fine features while observing large areas

10 µm

100 µm

1 mm

10 mm

100 mm

Scanning magnetic microscope

Microscope sample space

Micron-scale analogy with aeromagnetic surveys

B_z maps & coordinate systems

- Scanning magnetic microscopy uses maps of B_z (cartesian sample coordinates) rather than TMI
- Maps of B_x & B_y can be calculated from B_z(x,y)
- Z is positive upwards (opposite to aeromagnetic convention)

Magnetic field sensing direction

Design features of NTNU microscope

MTJ sensor (similar to hard-drive read head) provides high spatial resolution from close scan height (~100 μm)

- SQUIDs have higher sensitivity and S/N but greater "fly height"
- Spatial resolution also dependent on desired acquisition time and sensor size

Design features of NTNU microscope

- Helmholtz coils allow active cancelling of ambient field for remanence imaging
- Constant fields in any direction can be applied up to 100 μT to mimic conditions in Earth's field
- Pure induced component calculated by B_{induced} = B_{in-field} - B_{rem}

NTNU microscope results: Noise floor

AF demagnetised dunite paleomag core

Noise floor ~ 0.25 μT

NTNU microscope results: Bushveld gabbro

Remanence

Cross-polarized light

Gabbro from Bushveld layered intrusion, containing discrete magnetite and magnetite-bearing plagioclase (Church *et al*., in prep)

NTNU microscope results: In-field imaging

Plane-polarised light

Remanence

In-field

Eclogite-facies metagabbro, Western Gneiss Region, Norway (McEnroe *et al.*, in prep)

Calculating induced field from B_{rem} & B_{in-field}

In-field measurement contains both remanent component and field resulting from induced magnetisation ∴ B_{induced} = B_{in-field} - B_{rem}

Metamorphosed serpentinite, Modum, Norway (Pastore *et al*. 2017)

Experiments made possible by use of discrete samples

Constraints for inversions include:

- Ability to remagnetise in a known direction
- Ability to demagnetise sample, scanning between steps
- Ability to measure total moment of sample
- Knowledge of location of magnetic sources (by using thin sections or CT scans of thick sections)

Conclusions

- SMMs operate on a useful length scale to observe behaviour of complex magnetic systems
- SMM is similar to aeromagnetic surveying, but additional constraints can be applied for inversion
- The NTNU microscope can resolve signal from different phases of coarse-grained rock
- Measuring in 0-field and in applied field allows the calculation of induced signal, and possible inversion using susceptibility