The Application of Hand Held Laser Induced Breakdown Spectroscopy to Lithium Exploration: A Case Study

> Andrew Somers, SciAps Inc. Neil Sholtz, Lithium Australia NL

Exploration '17. Toronto, Canada

Overview

- The LIBS analytical technique: Laser Induced Breakdown Spectroscopy or LIBS-What is it and what can it do?
- Application of LIBS to understanding elemental abundance and in geological samples
- Example of using Hand Held LIBS to drilling samples:
 - Elemental analysis of Li in field pressed particulate samples from the Agua Fria Exploration Project, Sonora, Mexico
- Observations, Comments and Conclusions

Laser Induced Break down Spectroscopy or LIBS-What is it and what can it do?

- LIBS (Laser Induced Breakdown Spectroscopy)
 - Bench top technology for the past 50 years or so
 - Optical
- Advantages include:
 - Light Elements e.g. Li, Be, B, C, Na
 - Wide element range possible but dependent on spectral range of system used
 - Fast!
 - Spatially Precise

Handheld LIBS [HHLIBS]

- Handheld LIBS [HHLIBS] is a recent development in the technology that is evolving quickly
- Early users of HHLIBS have been challenged by:
 - Matrix specificity of empirical calibrations
 - Reliance on sample preparation for particulate samples when compared to other field portable analytical tools such as field portable XRF [fpXRF]
 - Weaker performance on key elements for geochemically important elements such as As, Bi, W, Cl etc..
- New advancements in both hardware and software are addressing some these issues

Laser Induced Breakdown Spectroscopy (LIBS)

- Atomic Emission Spectroscopy-Similar to other Optical Emission techniques but utilizes a laser to excite sample
- Can measure any sample medium (powder, solid, liquid, nonconductive)

Rapid Evolution of Technology

• Hand held LIBS analysers have seen rapid developments to:

- Improve laser quality and pulse consistency
- Increase spectral range
- Improve optics and therefore signal quality
- Reduce size, weight and ergonomics
- Provide software based calibration tools

LIBS Spectra SciAps Z300 190-950nm

Laser Induced Break down Spectroscopy or LIBS-What is it and what can it do?

Application of LIBS to characterising geological samples

- LIBS has been used extensively to test geological materials: GEOLIBS-Application of LIBS to the analysis of geological and environmental materials. Harmon, Russo and Hark (2013)
- All element respond between 190-900nm but have variable sensitivities: spectral range is very important for testing geological materials
- Laser spot size on different LIBS can vary from microns to hundreds of microns-related to ability to resolve samples with different grain sizes.
- Laser wavelength and power relate to data quality
- Use of purge gases such as Argon and Helium can improve data

Case Study

Li bearing Hectorite clay RAB drilling program: Elemental analysis of Li in field pressed particulate samples from the Agua Fria Exploration Project, Sonora, Mexico

Sci Aps

Sampling methodology

- 3m RAB composites were split and sub samples pressed using Reflex-PRESS field portable sample press
- Samples tested in 3 different locations using purpose built empirical calibration: Approximate test time <3sec/test
- Data compared to conventional 4 Acid digest with ICP finish

Sample preparation

Sample preparation

http://detcrc.com.au/top-ten/libs-sample-preparation-finalised-lab-rig-applications/

Data Collection

Time		Test #	Name		Li (%)	Li +/- (%)
	30/04/2017 16:07	3034	Test #3034	16:07, Apr 30	0.09027	0.007598
	30/04/2017 16:07	3035	Test #3035	16:07, Apr 30	0.02736	0.002912
	30/04/2017 16:07	3036	Test #3036	16:07, Apr 30	0.04906	0.003895
	30/04/2017 16:08	3037	Test #3037	16:08, Apr 30	0.08872	0.007708
	30/04/2017 16:08	3038	Test #3038	16:08, Apr 30	0.08345	0.009176
	30/04/2017 16:08	3039	Test #3039	16:08, Apr 30	0.07996	0.00755
	30/04/2017 16:08	3040	Test #3040	16:08, Apr 30	0.1006	0.008805
	30/04/2017 16:08	3041	Test #3041	16:08, Apr 30	0.02547	0.002376
	30/04/2017 16:09	3042	Test #3042	16:09, Apr 30	0.002424	0.001676
	30/04/2017 16:09	3043	Test #3043	16:09, Apr 30	0.05239	0.00652
	30/04/2017 16:09	3044	Test #3044	16:09, Apr 30	0.0259	0.002828
	30/04/2017 16:09	3045	Test #3045	16:09, Apr 30	0.08666	0.004409
	30/04/2017 16:10	3046	Test #3046	16:10, Apr 30	0.005871	0.002204
	30/04/2017 16:11	3047	Test #3047	16:11, Apr 30	0.05091	0.004383
	30/04/2017 16:11	3048	Test #3048	16:11, Apr 30	0.04595	0.002678
	30/04/2017 16:11	3049	Test #3049	16:11, Apr 30	0.04861	0.004347
	30/04/2017 16:11	3050	Test #3050	16:11, Apr 30	0.03947	0.005308
	30/04/2017 16:11	3051	Test #3051	16:11, Apr 30	0.04193	0.006799
	30/04/2017 16:12	3052	Test #3052	16:12, Apr 30	0.03426	0.003115

Comparative performance with laboratory n=148 over 4 drillholes

Comparative performance with laboratory

AF-17 004 [Li]ppm Lab v SciAps Z300

Comparative performance with laboratory

AF-17 002 [Li]ppm Lab v SciAps Z300

Observations

For best results:

- Samples should be flat
- Samples should be dry
- Samples should be well consolidated
- Quantitative analysis currently required careful set-up of empirical calibrations
- Using the SciAps Z300 measurement area is highly targeted and only measures 2mmX2mm max area per test
- Changes in lithology and associated matrix variations can affect performance of empirical calibration

Conclusions

- HHLIBS can provide valuable data in a field or lab setting to compliment conventional analytical and microanalytical techniques on a range of industry standard drilling sample types
- Relatively simple sample preparation and speed of analysis allows high throughput for drilling samples in the field.
- Direct in field measurement of elements such as Li that are current not possible with conventional techniques has been demonstrated to be possible

Thank You!

