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ABSTRACT 
 
Since Exploration ‘07, tremendous advances have been made in the inversion and quantitative interpretation of magnetic data in the 
presence of significant remanent magnetization. The advances have occurred on many fronts such as data processing, inversion 
methodology, as well as practical applications, with contributions from academia, government agencies, exploration and service 
industries. These advances have significantly extended the utility of 3D magnetic inversions on a wide range of scales in mineral 
exploration. Theoretically, the single most significant challenge posed by the presence of strong remanent magnetization arises from the 
unknown direction of the total magnetization, which is the vector sum of the induced and remanent magnetization components. As a direct 
consequence, the commonly used assumption of equating the magnetization direction to that of the inducing field is no longer valid and 
renders the inversions based on this assumption invalid. Accordingly, the development of methods to tackle this challenge falls into 
different categories including various mixed-parameter inversions and generalized inversions, with the latter containing three 
subcategories: estimating the total magnetization direction for use in inversions, inverting for the magnitude of magnetization from 
direction-insensitive data derived from total-field anomaly, and directly inverting for magnetization. By far the most diverse development 
has occurred in the magnetization inversion. A commonality among the diverse approaches is the effort to limit the variability of 
magnetization and thereby reduce the ambiguity by incorporating geological, petrophysical, or statistical constraints. This paper will 
review the development and advances along these threads in the last decade, showcase successful applications to illustrate these 
approaches, and discuss future directions. 
 

INTRODUCTION 

Background 
Three dimensional magnetic inversion has played an important 
role in mineral exploration in the last two decades. One of the 
early results that showcased magnetic susceptibility inversions 
was presented at Exploration ‘97 by Watts (1997), who applied 
the algorithm developed by Li and Oldenburg (1996) and 
showed the necessity and effectiveness of 3D magnetic 
inversion in answering a specific geological question of vital 
importance to the on-going exploration. Since then, many 
similar algorithms have been developed and improvements have 
been made (e.g., Pilkington, 1997; Li and Oldenburg, 2000a; 
Portniaguine and Zhdanov, 2002; Li and Oldenburg, 2003; 
Fullagar et al., 2008).  
 
Two particular directions of innovation are the algorithms to 
improve the capability to constrain the solutions through specific 
model parameterization and incorporation of geological 
information (e.g., Fullagar and Pears, 2007; Fullagar et al., 
2008) and the speed up of large-scale inversion by semi-
structured mesh (e.g., Davis and Li, 2013) and by using 
numerical solution of differential equations governing the 
magnetic problem (e.g., Lelièvre and Oldenburg, 2006; Davis et 
al., 2013). 
 
The key assumptions in most magnetic susceptibility inversions 
are that the magnetization is induced only and that the self- 
 

 
demagnetization effect is negligible, so that the magnetization 
direction is the same as the inducing field direction. There are 
two implications from this: (1) the magnetization direction is 
known; and (2) the susceptibility would be used as the sole 
physical property to represent the subsurface magnetic sources. 
In such cases, the magnetic susceptibility is assumed to provide 
an adequate characterization of the causative bodies. The 
inversion then focuses on recovering the susceptibility. 
 
There is a large class of exploration problems that can be tackled 
under these assumptions. However, it is also well recognized 
that there are more cases with either strong remanent 
magnetization, or self-demagnetization effect, or both. In such 
cases, the use of the inducing field direction as the 
magnetization direction is no longer valid. Consequently, the 
susceptibility inversion based on weak induced magnetization 
may not be applicable. 

Challenges Beyond Induced Magnetization 
The presence of remanent magnetization is common and can 
occur in rock units having either low or high magnetic 
susceptibility. The presence of high magnetic susceptibility that 
leads to self-demagnetization also occurs in some exploration 
problems. However, it can be argued that the occurrence of 
remanent magnetization is almost ubiquitous. As the inversion 
of magnetic data becomes a standard tool to aid interpretation at 
deposit, district, and regional scales, the need to handle 
remanent magnetization becomes an important issue.  
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The total magnetization is the vector sum of an induced 
component and the remanent component if we assume that both 
produce fields that are weaker than the inducing field, 
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The direction of the resultant magnetization is unknown if the 
remanent component is significant relative to the induced 
component and its direction also differs. The magnetization 
direction in the presence of high susceptibility can be highly 
variable due to the geometry dependence of the self-
demagnetization effect. The presence of both further compounds 
the problem and the total magnetization will depend nonlinearly 
upon the susceptibility and remanent magnetization.  
 
In these cases, the common underlying difficulty is that the 
direction of the total magnetization is unknown, can deviate 
significantly from the inducing field direction, and can be 
spatially variable. Therefore, the inversion ultimately needs to 
determine both the direction and magnitude of the magnetization 
distribution.  
 
Mathematically, this is summarized in the following equation, 
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where both the magnitude, )(rJ  , and direction, Ĵ , of the 
magnetization are unknown. In susceptibility inversions, we let 

0
ˆˆ BJ = when assuming weak induced magnetization. In the 

presence of significant remanent magnetization Ĵ  is unknown 
and can be variable. Here, we assume the availability of total-
field anomaly data, which constitute the majority of magnetic in 
exploration. We further assume the total-field anomaly is 
approximated by the projection of the anomalous magnetic field 
vector onto the inducing field direction: 
 
The question is then: how can we perform 3D magnetic 
inversions in such cases, now that we are faced with the task of 
recovering the magnitude of magnetization in 3D and its 
direction. This is one of the major areas of advancement in 
magnetic inversion since Exploration ‘07. 

Summary of Major Advances 
Many different approaches have been developed to invert 
magnetic data without knowing magnetization directions. Some 
are the results of extending and improving those used in the 
susceptibility inversions while others are innovative new 
approaches. Not surprisingly, a great many previous 
developments have become the building blocks for these 
advances. The variety of methods speaks to the effort and 
diversity of the potential-field research and development 
community, and to the importance of the problem. Given the 
large number of methods published and applied, we focus on 
those primarily developed for remanent magnetization and 
group them into the following three categories. They are listed 
below with subcategories and primary references. 
 

The first category is parametric inversion. This approach seeks 
to simultaneously invert for both the magnetization and 
geometrical shapes or boundaries of causative bodies using 
geometrically simple objects as basic model blocks (e.g., Foss 
and McKenzie, 2011; Pratt et al., 2012). 
 
The second category is the mixed-parameter inversion using a 
set of contiguous vertical prisms with movable top and bottom 
boundaries. This method uses a combined model representation 
with susceptibility and remanent magnetization and also inverts 
for the boundaries of geological units (e.g., Fullagar and Pears, 
2015). 

 
The third category consists of generalized inversions that seek to 
invert for a 3D distribution of the magnitude of the 
magnetization or the magnetization itself (a vector quantity 
defined by magnitude and direction): 
1. Effective susceptibility inversion using estimated total 

magnetization direction (e.g., Li et al., 2010); 
2. Effective susceptibility inversion using converted direction-

insensitive data: 
1) Magnetic amplitude data (e.g., Shearer, 2005; Li et al., 

2010) 
2) Normalized source strength data (e.g., Pilkington and 

Beiki, 2013) 
3. Magnetization inversion using: 

1) Parameterization in geomagnetic reference frame and 
specific constraints (e.g., Lelièvre, 2009; Lelièvre and 
Oldenburg, 2009a) 

2) Compactness model objective function (e.g., Ellis et al., 
2012); 

3) Cooperative strategy, amplitude, and magnetic 
anomalies (e.g., Liu et al., 2013, 2015; Fournier et al., 
2016a) 

4) Gramian constraint (e.g., Zhu et al., 2016) 
5) Oriented sparse mixed-norm objective function (e.g., 

Fournier, 2015; Fournier et al., 2016a); 
6) Fuzzy c-means clustering constraint on magnetization 

directions (e.g., Li and Sun, 2014, 2016). 
 
As in any discipline, there are certainly numerous efforts that 
collectively advance the science and practice. In the case of 
inverting magnetic data affected by remanent magnetization, this 
is equally true. There is a large amount of works both in the last 
decade and historically that may not be directly categorized in 
the framework which this review has settled on, but nonetheless 
are invaluable.  
 
In the following, we focus the review on the above-listed 
methods. The levels of details are chosen to enable practicing 
geophysicists to apply these methods to solve exploration 
problems. These details are essential to implementing, or to 
understanding the performance and behavior of the methods. 
Similarly, we aim to provide as comprehensive as feasible a list 
of references to benefit both the research and practicing 
geophysicists. 
 
The focus of this review is on the methods that seek to construct 
a 3D model of magnetization in the presence of significant 
remanent magnetization. These methods include and are related 
to the above-listed inversion methods. The general topic of 
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remanent magnetization, however, is a much broader field and 
beyond the scope of this review.  
 
Much pioneering work in remanent magnetization-related 
interpretation using borehole vector magnetic measurements has 
been carried out by W. Morris and his collaborators (e.g., 
Mueller et al., 1997; Morris et al., 2007). Many insights gained 
in their borehole work are applicable in airborne or ground 
vector magnetic measurements that are becoming available (e.g., 
Dransfield et al., 2003). These methods are somewhat beyond 
the scope of this review paper, so readers are referred to the 
above-listed and many other publications. 
 
The topic of determining remanent magnetization and total 
magnetization of isolated bodies is reviewed in an excellent 
paper by Clark (2014), which includes an extensive list of 
references. That review paper is highly recommended for 
anyone researching and using remanent magnetization in applied 
geophysics. 
 
We will start with the two categories of mixed-parameter 
inversions for directly recovering magnetization with source 
geometry. We next proceed to generalized inversions that aim to 
recover 3D distributions of magnetization (either its magnitude 
or the magnetization in its vector form). This category has 
witnessed by far the most variety of advances. We then 
introduce the exciting direction of geology differentiation based 
on the inverted magnetization directions. We conclude the 
review with a brief discussion and look ahead. 

PARAMETRIC INVERSION 
Historically, parametric inversions in magnetics are perhaps 
among the oldest magnetization inversions (e.g., Bhattachyryya, 
1966) and it is not surprising that renewed research and 
development associated with remanent magnetization also 
employed this approach and thrived. Within this context, the 
traditional least-square parametric inversions have seen the most 
work. 
 
There have been many developments on this front. Foss and 
McKenzie (2009, 2011) formulate a parametric inversion that 
simultaneously recovers the geometrical parameters describing 
the shapes of a contiguous set of causative bodies and total 
magnetization vectors that are assumed to be constant within 
each body. Pratt et al. (2012) fit ellipsoids to estimate the shape 
and total magnetization of causative bodies. These approaches 
are extensions of the parametric algorithm used by others (e.g., 
Silva and Hohmann, 1981; Mueller et al, 1997) to a more 
flexible parameterization using ellipsoids and dipping prisms 
with polygonal bases. The solution is obtained through nonlinear 
least-squares minimization of a data misfit function.  
 
The parametric approach greatly reduces the non-uniqueness 
that is typically associated with the generalized inversion at the 
expense of the limited capability for automated inversion of 
large-scale data sets. However, Foss and McKenzie’s (2011) use 
of many causative bodies each having a possibly different 
magnetization makes it similar to generalized 3D inversions but 
having a small number of unknowns. These methods provide a 

complementary tool set of practical value. Figure 1 illustrates 
this aspect. 

 
Figure 1: Inversion of total-field magnetic anomaly (a) affected 
by remanent magnetization by using a group of dipping prisms 
with polygonal bases and individual total magnetization. (c) 
(Foss and McKenzie, 2011). Panel (b) shows the predicted data. 

COMBINED SUSCEPTIBILITY-
MAGNETIZATION INVERSION 

Fullagar and Pears (2015) extend their mixed parameterization 
inversion algorithm using contiguous vertical prisms subdivided 
into cells with movable top and bottom (e.g., Fullagar et al., 
2008). Model cells can belong to different geological units that 
can carry remanent magnetization in addition to susceptibility. 
The authors adopt an interesting parameterization consisting of 
susceptibility and a remanent magnetization vector normalized 
by the strength of the inducing field to account for both induced 
and remanent magnetization, 
 

)ˆ'( 00 qBBJ 
+= κ         (3) 

 
where 'κ  is an effective susceptibility that can account for self-
demagnetization and q  is a normalized remanent magnetization 
component.  
 
The algorithm can initialize the solution by first recovering a 
shape for the magnetic body through the inversion of total 
magnetic gradient (Shearer and Li, 2004) and then sequentially 
invert for the susceptibility and normalized magnetization 
vector. In addition “geometry inversion" can be performed 
(Fullagar et al., 2008) to adjust the 3D shape of the magnetic 
body. There is also the capability to constrain the magnetic 
susceptibility to a lower and upper bound estimated for the 
specific geologic unit. Negative susceptibility is permissible. It 
is also possible to assign different remanent magnetizations to 
different geological units. Because of the ambiguity from the 
mixing of induced and remanent magnetization, the algorithm 
effectively recovers an optimal vector sum of a component 
parallel to inducing field direction and a remanent component in 
an unspecified direction. Depending on the sequence of 
minimization, the two components can differ but the vector sum 
remains the same.  
 
Within this framework, the authors have also incorporated self-
demagnetization (Fullagar and Pears, 2013) and, thereby, 
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enabled the full treatment of the magnetic inversion in the 
presence of both remanent magnetization and high magnetic 
susceptibility. The latter is a much more challenging problem 
due to the highly variable resultant magnetization direction. 
 
Figure 2 illustrates the algorithm using a simulated geologic 
model consisting of an igneous plug intruded into a mixed 
volcanic and sedimentary terrane. The susceptibility varies 
within the host rocks but the magnetic properties are assumed 
uniform in the plug. The igneous plug is highly magnetic and 
has remanent magnetization that is twice as strong as the 
induced magnetization. The top panel shows the perspective 
view of the total-field anomaly and the bottom panel shows a 
north-south cross-section through the igneous plug. Whether the 
true susceptibility or zero susceptibility is assigned to the plug, 
the same resultant magnetization is recovered for the plug over 
the smoothly varying susceptibility in the host rock. Figure 3 
illustrates the companion part of this algorithm in dealing with 
the self-demagnetization effect, and shows the varying 
magnetization direction recovered by the algorithm within 
banded iron formations. 
 
Although the authors did not explore the separation of the 
induced and remanent magnetization, the algorithm does provide 
the fascinating opportunity to perform advanced interpretation 
by examining recovered susceptibility in combination with the 
magnitude and direction of the remanent magnetization since 
both are direct results of such an inversion. 
 

 
 

Figure 2: Example illustrating magnetic inversion with 
remanent magnetization using the vertical prism 
parameterization. The top panel shows the total-field anomaly. 
The lower panel shows the recovered causative body with 
remanent magnetization (direction indicated by the arrow) in a 
cross-section of background magnetic susceptibility displayed 
under the topographic surface. (Image courtesy of P. Fullagar 
and G. Pears). 

 
 
Figure 3: Example illustrating the ability of inversion using VP-
parametrization in accommodating a combination of remanent 
magnetization and self-demagnetization in environments with 
complex geologic structures. The top-left inset shows the 3D 
structure of banded iron formation; and the lower panel shows 
the highly variable total magnetization in a cross-section.  

GENERALIZED MAGNETIZATION 
INVERSION  

This category of methods seeks to construct 3D distributions of 
magnetization ultimately treated as a function of spatial position 
and represented by a piece-wise constant or similar 
approximation. This category is characterized by fixed model 
discretization and inversion for the magnetization. Given this 
category is a natural extension of the generalized magnetic 
inversion for 3D susceptibilities in mineral exploration, it is not 
surprising that many research groups have expended significant 
effort in developing methods and algorithms to invert for 3D 
distribution of magnetization.  
 
Since the major challenge in such generalized inversions is the 
need to simultaneously recover both magnitude and direction of 
magnetization (i.e., a vector function) and the variability in the 
direction in a finely discretized model appears to introduce the 
strongest ambiguity, nearly all algorithms in this category seek 
to impose some type of constraints to restrict the admissible 
solutions so that geologically interpretable models of 
magnetization can be constructed. Furthermore, these constraints 
either implicitly or explicitly act primarily on the variability of 
the magnetization direction so the admissible models have 
limited or coherent magnetization directions. 

Magnetization Direction Estimation 
As discussed above, the major challenge in quantitative 
interpretation of magnetic data in the presence of remanent 
magnetization is the unknown direction of the total 
magnetization. A natural extension of the susceptibility 
inversion is to invert for the magnitude )(rJ  . Thus, a logical 
sequence is to estimate the magnetization direction first and then 
invert for the magnitude. 
 
This approach is suitable for interpreting isolated anomalies that 
are produced by compact source bodies.  The estimated direction 
can then be supplied to equation 2 to invert for the magnitude in 
the same way as the inversion for susceptibility is carried out. In 
fact, the existing susceptibility inversion algorithm is directly 
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applicable if we introduce a concept of effective susceptibility as 
the ratio of the magnitude of total magnetization over the 
inducing field strength, 
 

000 /)(/)( BrJHrJe
 µκ ==  .                          (4) 

 
The recovered effective susceptibility does not correspond to 
intrinsic susceptibility, but characterizes the combined 
magnetization strength due to induced and remanent 
magnetization components. This is the approach Li et al. (2010) 
proposed to invert isolated compact magnetic anomalies affected 
by remanent magnetization. The advantage of this approach is 
that once a magnetization direction has been estimated, any 
susceptibility inversion algorithm can solve for the effective 
susceptibility distribution. 
 
Magnetization direction estimation is a well-studied topic in 
magnetic exploration and numerous algorithms have also been 
developed and used in solid earth geophysics. For example,  
Roest and Pilkington (1993) correlate the total gradient of the 
magnetic anomaly and the absolute value of the horizontal 
gradient of the pseudo-gravity produced by 2D sources. This 
approach inspired Dannemiller and Li (2006) to develop a cross-
correlation method in 3D based on the total gradient and vertical 
derivative of calculated reduced-to-pole (RTP) data. Gerovska et 
al. (2009) devised a similar method using the amplitude data and 
the RTP field itself. Fedi et al. (1994) developed a method that 
minimizes the magnitude of the trough of the calculated RTP 
field. Lourenco and Morrison (1973) and Phillips (2005) apply 
the integral relationships of magnetic moments derived by 
Helbig (1963). Medeiros and Silva (1995) use multipole 
expansion to estimate the total magnetization direction together 
with the orientation of the source body. Haney and Li (2002) 
develop a wavelet-based method for determining magnetization 
direction from profile data in 2D problems. If gravity or gravity 
gradient data are also available, then Poisson’s relation between 
the magnetic and gravity gradient tensor can also be used to 
estimate the magnetization direction, as demonstrated by Cordell 
and Taylor (1971), Medonca (2004), and Pedersen and Bastani 
(2016).  
 
Given the importance of the magnetization direction, a large 
number of publications and algorithms are available for use in 
practice. Clark (2014) provides a comprehensive review with an 
extensive reference list. 
 
For this review, we present two methods that are easy to 
implement, have proved to be effective, and do not require 
additional information: Helbig’s moment method and the cross-
correlation methods. The first directly explores the relation 
between the anomaly and the magnetization direction and 
computes the magnetization direction from the data, whereas the 
second estimates the magnetization direction by utilizing the 
symmetry property of the RTP data.  In both methods, the 
magnetization direction is assumed to be constant within the 
source.  

Helbig’s Moment Method 
Helbig’s method (Lourenco and Morrison, 1973; Phillips, 2005) 
calculates the components of the magnetic dipole moment, mx, 

my and mz, of a compact magnetic source from the first moments 
of the vector components Bx, By and Bz of the anomalous 
magnetic field. The method is based on the relationships first 
presented by Helbig (1963), which has the following form in SI 
units, 
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where µ0 is the free space permeability, Bx, By, and Bz are 
respectively the three orthogonal components of anomalous 
magnetic field, mx, my, mz are respectively the three components 
of magnetic dipole moment. Assuming that the magnetization 
direction is constant within the source body, and dipole moment 
direction determined from the three components by the above 
equation then provides the magnetization direction.  
 
Two practical issues must be considered in applications. First, 
we usually have only total-field anomaly data, and need to 
calculate the three components Bx, By and Bz from the total-field 
anomaly. This can be accomplished using wavenumber domain 
operators (e.g., Pedersen, 1978; Blakely, 1996; Schmidt and 
Clark, 1997, 1998) if the observational surface is planar. When 
the data are located at low magnetic latitudes or on uneven 
observation surfaces, the equivalent source method of 
component conversion can be used (e.g., Dampney, 1969; 
Hansen and Miyazaki, 1984; Li and Oldenburg, 2010).  
 
Second, since Helbig’s method is applied over finite data 
windows while the integrals of Bx, By and Bz over the infinite 
plane of integration are identically zero in theory, care must be 
exercised to satisfy these conditions within the data window 
adopted for the calculations. 

Cross-Correlation Methods  
Dannemiller and Li (2006) developed an estimation method by 
examining the symmetry of various RTP fields computed for 
different magnetization directions. Gerovska et al. (2009) 
developed a similar method using the RTP data and the 
amplitude of the anomalous magnetic vector. Both methods rely 
on the fact that the RTP data for a symmetric vertical magnetic 
body is symmetric. For dipping source bodies such as dykes, the 
RTP data are the least asymmetric when the correct 
magnetization direction is used. It follows that the vertical 
derivative of RTP data is also least asymmetric. The aim is then 
to find the magnetization direction that minimizes the 
asymmetry of the computed RTP data. 
 
The asymmetry is gauged by comparing the computed RTP or 
its vertical derivative with their respective envelope. It has also 
been shown that the total gradient (amplitude of the gradient 
vector in 3D) of the RTP anomaly is the envelope of the vertical 
derivative of the anomaly produced under arbitrary inducing-
field and magnetization directions (Nabighian, 1972; Haney et al 
2003).  The envelope is a function tangential to all members of 
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the function family, which would be the magnetic anomalies 
corresponding to different magnetization directions in our case, 
is the most symmetric form. Since the envelopes cannot be 
calculated from the total-field anomaly without knowing the 
magnetization direction, we approximate them by the total 
gradient, )( zB∇ , and magnetic amplitude data, 222

zyx BBB ++ , 

respectively, computed for an assumed magnetization direction. 
 
The symmetry of computed RTP field for an assumed 
magnetization direction can then be gauged using its cross-
correlation with the corresponding amplitude data or using the 
cross-correlation between the vertical derivative of RTP and 
total gradient. The adopted inclination and declination estimates 
are those that maximize the cross-correlation.   
 

 
 

Figure 4: The total-field magnetic anomaly over a kimberlite 
dyke. The inducing field is in the direction of I=86.7° and  
D=26.3°. The negative anomaly in the center indicates presence 
of strong remanent magnetization. 

A Field Example  
The data set shown in Figure 4 contains a negative anomaly in 
the center surrounded by several smaller positive ones. The 
inducing field has an inclination of 86.7º and declination of 
26.3º. Given the high magnetic latitude and dominant negative 
anomaly, it is clear that the kimberlite has strong remanent 
magnetization and the total magnetization is nearly in the 
opposite direction to the inducing field.  We first estimate the 
direction for the source of the central negative anomaly and then 
invert the total-field data to construct the effective susceptibility.  
 
Table 1. Magnetization direction estimated using two different 
methods for the field data set shown in Figure 4.  
 

Estimation method Inclination (°) Declination (°) 

Helbig’s method -84.7 70.0 

Cross-correlation -87.4 26.0 

 
The results of estimation are listed in Table 1 for comparison. 
The estimated values for inclination are similar but the 
declination varies greatly. This is expected given the inclination 
is close to -90º. When used in an inversion, the error in 
declination does not strongly affect the final result either. Using 

the estimated direction, inversion of total-field anomaly (Figure 
4) is shown in one cross-section and one plan section in Figure 
5. 
 

 
Figure 5: Inverted effective susceptibility obtained by using the 
estimated magnetization direction from the cross-correlation 
method.  The effective susceptibility is shown in one cross-
section at 300-m north (top) and one plan-section at a depth of 
50 m (bottom) (Li et al, 2010). 

Inversion of Direction-Insensitive Data 
The direction estimation approach works well with isolated 
anomalies, but it is difficult to extend to more complicated cases 
such as those with multiple overlapping anomalies. In such 
cases, a reliable direction may not be estimated or the estimate 
has no real relevance. One logical alternative is to circumvent 
direction, and use “data” that are derived from the total-field 
anomaly and have a weak dependence on magnetization 
direction.  
 
Nabighian (1972) shows that both the total gradient and the 
magnitude of the anomalous magnetic field vector (henceforth 
referred to as the amplitude data) are independent of 
magnetization direction in 2D, and they are envelopes of the 
horizontal or vertical derivatives of the magnetic anomaly or the 
total-field anomaly, respectively. Thus, it is feasible in 2D cases 
to invert for the magnitude of the magnetization without 
knowing the magnetization direction.  
 
Such direction independent quantities cannot be calculated in 3D 
cases without knowing the magnetization direction (e.g., 
Nabighian, 1984; Haney et al., 2003). However, many authors 
have examined different quantities that are approximately 
independent of magnetization direction (i.e., weakly dependent 
upon, or insensitive to, the direction). These include amplitude 
data and the total gradient (e.g., Nabighian, 1972, 1984; Hou, 
1979; Roest et al, 1992; Stavrev and Gerovska, 2000; Haney et 
al., 2003, Shi et al., 2013), and normalized source strength 
(NSS) defined by equation 10 (e.g., Wilson, 1985; Beiki et al., 
2012). Therefore, one can formulate an inverse problem to 
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recover the magnitude of the magnetization distribution in the 
subsurface from one of these transformed data sets without 
knowing the local magnetization directions (Shearer, 2005; Li et 
al., 2010; Pilkington and Beiki, 2013).   
 
The forerunners of this approach are Paine et al. (2001), who 
demonstrated that the vertical integration of the total gradient of 
the total-field anomaly and the total gradient of the vertical 
integration of total-field anomaly are both weakly dependent 
upon magnetization. They treated each of these derived 
quantities as an approximation to RTP data and inverted them 
using a susceptibility inversion algorithm. Although treating 
these quantities as RTP data is not conceptually correct, the 
underlying idea of using direction-insensitive transformed data 
is sound. 
 
In contrast to the direction estimation method, the direction-
insensitive data approaches have the advantage that they are not 
limited to a single anomaly nor do they require all anomalies 
have the same magnetization direction. Therefore, the approach 
is generally applicable to a wide range of problems in which the 
source distribution is more complicated.    
 
In the following, we present the basics of algorithm for inverting 
amplitude data or normalized source strength. The inversion of 
other direction-insensitive quantities can be carried out in the 
same manner, as long as one can perform the forward modelling 
and calculate a descent direction or, better yet, the sensitivity 
matrix.  

Inversion of Amplitude Data  
The amplitude data are defined as the length of the anomalous 
magnetic field vector, 
 

222
azayaxaa BBBB ++== B                     (6) 

 
where Ba is the amplitude and (Bax, Bay, Baz) are the three 
orthogonal components of the magnetic anomaly vector. 
Although amplitude data do have some dependency on 
magnetization direction in 3D, the dependency is rather weak.  
 
Figure 6 illustrates this weak direction dependence. The 
causative body is made up of two horizontal segments of vertical 
dykes with different strike directions and variable depth to the 
top. The inducing field has an inclination of -5º and a 
declination of 0º. The column on the left shows the total-field 
anomaly for two different magnetization directions, one aligned 
with the inducing field and another nearly perpendicular. The 
second case simulates the presence of strong remanent 
magnetization. The column on the right shows the 
corresponding amplitude data. While the total-field anomalies in 
the two cases are markedly different, the amplitude data are 
much more similar and provide a good indication of the 
horizontal location of the causative body.  
 
This direction-insensitivity of amplitude data is advantageous 
for interpretation of magnetic data in the presence of remanent 
magnetization. The amplitude data can be inverted to recover a 

3D distribution of magnitude of the magnetization (Shearer, 
2005; Li et al, 2010), represented by the effective susceptibility.  
 
To invert amplitude data, we must first calculate the amplitude 
data from the observed total-field anomaly data. The three 
magnetic anomaly components may be converted from the total-
field anomaly using wavenumber-domain expressions (e.g., 
Pedersen, 1978) when the data are located on a plane or 
equivalent source techniques (Dampney, 1969) if the data lie on 
uneven observational surfaces or located at low magnetic 
latitudes.  
 
The formulation of amplitude inversion assumes the availability 
of three-component data for calculating the amplitude data but 
places no restrictions on the strength of the anomalous field. The 
above-mentioned approaches for calculating amplitude data via 
conversion of total-field anomaly to three-component anomaly, 
however, assume that the anomalous field is much weaker than 
the inducing field and the total-field anomaly is well 
approximated by the projection of the anomalous field vector 
onto the inducing field direction. This assumption may be a limit 
in practical applications in highly magnetic environments. 
However, the availability of directly measured three-component 
magnetic data would remove this limitation.  
 

 
Figure 6: Comparison of amplitude data for two different 
magnetization directions. The top row displays the total-field 
anomaly and amplitude data at low latitude (I=-5º) produced by 
induced magnetization. The black lines indicate the projection of 
the source location on the surface. The bottom row shows the 
corresponding quantities when the magnetization is nearly 
vertical under the same inducing field. The total-field anomalies 
are drastically different, yet the corresponding amplitude data 
are much more similar.  
 
For computational purposes, we can adopt a model 
representation that discretizes the 3D model region into a set of 
contiguous rectangular cells, and assume a constant effective 
susceptibility value within each cell. In such a model, each 
component of the magnetic anomaly vector is given by a matrix-
vector product in the same way as for total-field anomaly, 
 

,,, κκκ 
zzyyxx ddd GGG ===        (7) 
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where T
xNxx BBd ),,( 1 


= is a  vector containing the x-

components of the anomalous magnetic field, 
yd


 and zd


 

contain the corresponding y- and z-components, 
T

Mee ),,( ,1, κκκ 
 = is the vector of unknown effective 

susceptibilities to be recovered, and xG , 
yG , and zG  are the 

sensitivity matrices relating the anomalous magnetic field 
components to the effective susceptibilities. 
 
Combining equations 6 and 7 yields the requisite forward 
mapping that relates the amplitude data to the effective 
susceptibility model. This relationship is nonlinear and we have 
a nonlinear inverse problem. 
 
To perform the inversion, a standard Tikhonov regularization 
approach similar to that used for conventional susceptibility 
inversion can be used.  This is the approach used by Shearer 
(2005) and Li et al (2010). The solution is obtained iteratively.   
 
An important component of amplitude inversion is the 
calculation of the Jacobian matrix, whose elements are the 
partial derivative of the amplitude data with respect to the 
effective susceptibility. A closed form solution based on the 
inner production of the magnetic anomaly vectors of the entire 
model and a given model cell, respectively, is presented by Li et 
al (2010). 
 
Coleman and Li (2012) and Coleman (2014) examine the error 
propagation from total-field anomaly to the calculated amplitude 
data. To a first order approximation, the standard deviation of 
the computed amplitude data is the same as that of the total-field 
anomaly. This relationship enables us to define a target 
amplitude data misfit and choose the optimal regularization 
during the inversion of amplitude data that are computed from 
total-field anomaly. 
 
The inversion of amplitude data has been applied successfully to 
a wide range of data sets in exploration settings. Li et al. (2012) 
apply the method to image volcanic units in a basin environment 
for gas exploration; Li and Li (2014) apply the method to image 
an intrusive complex whose contact with limestones forms the 
favorable zone of magnetite deposit; Leao-Santos et al. (2015) 
use it to characterize an iron oxide copper gold (IOCG) deposit 
near the magnetic equator. 

A Field Example 
Figure 7 shows the total-field anomaly and the corresponding 
amplitude data computed through an equivalent source method 
at the Furnas South deposit located in the Carajás Mineral 
Province, in the northern region of Brazil (Leao-Santos et al. 
2015). The magnetic anomaly is produced by a tabular 
magnetite-rich orebody. The ambient field has an inclination of 
−5.7° and a declination of −19.8°. It is clear that these anomalies 
do not have the pattern that would be produced by induced 
magnetization at this low magnetic latitude. The unusual pattern 
was cause by the combination of three factors including the 
presence of strong remanent magnetization, self-
demagnetization, and an anisotropic magnetic susceptibility. The 
end result is a magnetization closer to vertical than to the 

inducing field. The peak of calculated amplitude exhibits an 
excellent correspondence with the horizontal location of the 
orebody. 
 
The inversion of the amplitude data produced a 3D effective 
susceptibility distribution that is consistent with known geology 
and images orebodies delineated by extensive drill holes, as 
shown in a cross-section in Figure 8 and in 3D in Figure 9. 

 
Figure 7: The total-field magnetic anomaly from an airborne 
survey (top). The local inducing field is in the direction of I = 
−5.7º and D = −19.8º.  Magnetic amplitude calculated from the 
total-field anomaly (bottom). The black lines indicate the 
horizontal location of high-grade ore and the white line indicates 
the position of a geologic section for comparison (after Leao-
Santos et al, 2015). 
 

 
Figure 8: The comparison between the inverted effective 
susceptibility from amplitude data and the known geology in a 
cross-section indicated in Figure 7. The recovered effective 
susceptibility model (color contour) has characterized the 
massive magnetite (outlined in light blue), and the known 
mineralized zone in dark blue. Measured magnetic 
susceptibilities are also shown along several drill holes (after 
Leao-Santos et al, 2015). 
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Figure 9: 3D comparison of the recovered effective 
susceptibility model (pink) with the known ore bodies (green) in 
the 3D geological model of the high-grade mineralization zones 
constructed from extensive drilling in the Vale-Furnas Project 
(after Leao-Santos et al, 2015). The overlapping volume (purple) 
indicates the consistency between the two models. 

Inversion of Normalized Source Strength  
Another interesting development in this subcategory is the 
inversion of NSS derived from the magnetic gradient tensor by 
Pilkington and Beiki (2013). The use of NSS dates back to 
1980s in a host of publications on magnetic target identification 
by examining the eigenvalue decomposition of magnetic 
gradient tensor, T

aB


∇=T , produced by a dipole source at an 
observation location. The tensor admits an eigenvalue 
decomposition, 
 

TRRΛT = ,     (9) 
 
where R is an orthonormal eigenvector matrix and Λ is the 
eigenvalue matrix with the eigenvalues in descending order 

321 λλλ >>  as diagonal elements. Wilson (1985) defines a 
tensor invariant quantity, 
 

31
2
2 λλλµ −−= ,                  (10) 

 
which is proportional to the dipole moment but independent of 
its orientation.  This invariant, termed the NSS, is also inversely 
proportional to the fourth power of the distance from the sensor 
to the source. Thus, 
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Where || m is the dipole moment, sr

  and r are respectively the 
source location and observation locations. 
 
The direction-independent property of the NSS holds strictly 
true only in the case of a dipole or spherical source (e.g., 
Schmidt et al., 2004) and does not extend to arbitrary 3D 
sources. Nonetheless the NSS is weakly dependent on the 

direction in general and has been employed for 3D interpretation 
of magnetic data (e.g., Beiki et al., 2012; Clark, 2013). 
 

 
 

Figure 10: Comparison of calculated NSS with the amplitude 
data (T), total gradient (AS), and total-field anomaly (TF) 
produced by a set of prisms with differing magnetization 
directions (Pilkington and Beiki, 2013). 
 
Figure 10 is reproduced from Pilkington and Beiki (2013) to 
illustrate the weak dependence of NSS upon magnetization 
direction. It compares the total-field anomaly produced by six 
prisms having different magnetization directions with 
transformed amplitude data, total gradient, and NSS. The total-
field anomaly is complicated, whereas the NSS, amplitude, and 
total gradient peaks coincide quite closely with the magnetic 
bodies.  
 
To perform NSS inversion, one must first convert the total-field 
anomaly to three orthogonal components (Bax, Bay, Baz) and 
further compute their derivatives to generate the gradient tensor. 
Applying an eigenvalue decomposition to the computed gradient 
tensor at each location then yields the eigenvalues required for 
NSS. The calculation of gradient tensor adds a level of 
complexity and care must be taken to avoid the amplification of 
noise in the derivative calculations. If the gradient tensor is 
measured, then it can be used directly in the decomposition. 
Pilkington and Beiki (2013) use the Tikhonov regularization 
formalism to invert NSS, and carry out the minimization of the 
total objective function using a gradient descent method.  
 
As a field example, Figure 11 shows part of a data set from the 
Jean Marie River area, Northwest Territories, Canada 
(Pilkington and Beiki, 2013). The different patterns of the two 
total-field anomalies indicate the presence of strong remanent 
magnetization. The calculated NSS shows two compact 
anomalies. The inversion of these NSS data produces two 
similar magnetic bodies with spatial configurations (Figure 12). 
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Figure 11: Top panel shows total-field anomalies from 
Northwest Territories, Canada. The inducing field has I=79o and 
D=21o. The lower panel shows the calculated NSS (Pilkington 
and Beiki, 2013; image courtesy of M. Pilkington). 

 

 
 
Figure 12: 3D effective magnetic susceptibility model 
recovered by inverting the calculated NSS in Figure 11. A cutoff 
value of 0.01 SI is used to display the high-susceptibility regions 
of the model. (after Pilkington and Beiki, 2013). 

Magnetization Inversion 
The primary difficulty with the inversion of magnetic data 
affected by remanent magnetization is the unknown 
magnetization direction. The approaches discussed in the two 
preceding subsections seek either to estimate the direction prior 
to inversion or to circumvent the need for the direction in the 
inversion. In both cases inversion produces a 3D model of 
magnetization magnitude. Ideally, we would like to recover the 
magnetization vector fully, both its magnitude and direction.   
 
The corresponding inverse problem is highly non-unique since a 
vector magnetization inversion seeks to recover three functions 

in a 3D space. The magnetization can be represented by its three 
components or by its magnitude and direction, i.e. inclination 
and declination. However, we only have a 2D magnetic data set. 
Therefore the associated ambiguity is much more severe than 
that encountered in the inversion for one scalar function such as 
magnetic susceptibility or the magnitude of magnetization.  
Thus additional conditions are required to select magnetization 
distributions with the characteristics preferred by the user. These 
additional conditions on the magnetization or direction are 
typically imposed through explicit constraints or by augmenting 
the objective function. There have been a large number of 
published works on magnetization inversion. Although it 
remains an active area of research, many algorithms are now 
available for application in exploration.  
 
Wang et al. (2004) present an algorithm for determining the total 
magnetization direction of separated, homogeneous bodies. 
Kubota and Uchiyama (2005) present least-squares inversion for 
3D distributions of magnetization in seamount studies. Lelièvre 
and Oldenburg (2009a) present a comprehensive study of 
magnetization inversion, in which the authors discuss two 
alternative parameterizations and explore the need to impose 
geological constraints to produced interpretable magnetization 
models. Ellis et al. (2012) present a similar algorithm and 
employ an objective function which imposes compactness on the 
magnitude of magnetization. Liu et al. (2013) developed a 
magnetization inversion for borehole data by starting from the 
inversion of amplitude data. Zhu et al. (2015) developed a 
Gramian-constrained magnetization inversion. Fournier (2015) 
and Fournier et al. (2016a and 2016b) developed an oriented 
sparse mixed-norm objective function to constrain both the 
spatial distribution and direction variation of magnetization. Li 
and Sun (2014, 2016) developed a magnetization inversion by 
statistically constraining the variations of magnetization 
direction using fuzzy c-means (FCM) clustering. These 
algorithms have similar essential parts and differ primarily in 
what the constraints are imposed on magnetization direction. We 
note that the combined susceptibility-magnetization inversion 
discussed in “Combined Susceptibility-Magnetization 
Inversion” is also a form of magnetization inversion that yields 
3D total magnetization vector models. 
 
Working with magnetization direction can be challenging but 
the reward lies in the potential to extract additional information 
from the magnetization directions since the remanent 
magnetization carries information about the formation and 
geological history of the magnetic units. Therefore, any 
advancement in magnetization inversion will not only help 
overcome the numerical difficulties arising from the unknown 
magnetization direction, but also provide an opportunity for 
magnetic source characterization and geological differentiation. 
 
In this section, we discuss briefly six magnetization inversion 
algorithms that employ different parameterization and inversion 
approaches. We assume total-field magnetic anomaly 

Tobs
i

obsobs TTd ),,,( 1 


∆∆=  produced by a 3D distribution of 

magnetization ),,( zyxJ


 and we represent the 3D function of 
magnetization by a set of contiguous rectangular cells. 
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Assume that each cell has a uniform magnetization
),,( zjyjxjj JJJJ =

 . For convenience, we represent the 

magnetization by its three Cartesian components, and define the 
model for the inverse problem as the algebraic vector formed by 
concatenating the three components of the total magnetization 
vectors, 
 

















=

z

y

x

J
J
J

m






 ,                (12) 

 
where 

zyx JJJ


 and,, contain the three components of the total 

magnetization in model cells. The forward modelling is then 
given by the following equation, 
 

dmGGG zyx

 =],,[               (14) 

 
where 

zyx GGG  and,, are respectively the sensitivity matrices of 

the total-field anomaly with respect to the x-, y-, and z-
components of total magnetization. 
 
Magnetization inversion is usually formulated in terms of 
Tikhonov regularization and the vector magnetization 
distribution is found by minimizing the objective function,  
 

)()()( mmm md
 βφφφ += ,                   (15) 

 
where )(md

φ  is the data misfit function and )(mm
φ  the model 

objective function.  
 
For different implementations that impose special constraints, 
authors have also used similar representation but in rotated 
coordinate systems that are either local or global within the 
model domain (e.g., Lelièvre and Oldenburg, 2009; Fournier et 
al., 2016).  We will review these in specific section below.   

Magnetization Inversion in Inducing-Field Reference  
 
Lelièvre (2009) and Lelièvre and Oldenburg (2009a) developed 
a full 3D magnetization inversion algorithm employing two 
different parameterizations. They design these parametrizations 
explicitly for imposing constraints for dealing with the increased 
ambiguity in the inversion for magnetization.   
 
In the first approach, magnetization is represented in a Cartesian 
reference frame aligned with the inducing field direction. The 
primary direction is the inducing field,

0
ˆˆ Bp = , and additional 

two directions ŝ and q̂  perpendicular to 
0B̂ completes the 

orthogonal trio (Figure 13). The magnetization in each cell is 
then defined by the three components in this coordinate system, 
 

qqssppJ iiii ˆˆˆ ++=
 .                  (16) 

 
This reference frame can be considered as a rotated version of 
that used in equations 12 and 13 because the three directions 

remain constant throughout the model domain. This is referred 
to as TMVC, where C stands for Cartesian. 
 
In the second approach, the authors explicitly represent the 
magnetization by its magnitude, inclination, and declination. 
The parameterization is in a spherical coordinate system and 
related to the Cartesian components by the standard 
geomagnetic projection in the right-hand Cartesian system with 
x-axis pointing north (e.g., Blakely, 1996). The authors refer to 
this parametrization as TMVS, where S stands for spherical. The 
advantage of TMVS is that it is more convenient to imposing 
direction-based constraints on the magnetization direction. 
 

 
Figure 13: The parameterization of magnetization in the 
inducing-field reference frame. 

0
ˆˆ Bp =  is the inducing field 

direction and ŝ and q̂  are two perpendicular directions. 
 

 

 
 

Figure 14: A synthetic example with two source bodies having 
differing magnetization directions. Top panel shows the total-
field anomaly. Bottom panel is a plan section through the 
recovered 3D magnetization model. The color contour shows the 
recovered effective susceptibility, arrows the inverted 
magnetization direction. The black rectangles outline the 
position of the source bodies. (Lelièvre and Oldenburg, 2009a). 
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The interesting aspect of TMVC, however, is that it partitions 
the total magnetization into one part that is parallel with the 
inducing field and second part qqss ii ˆˆ +  that must be purely 
remanent. This partition essentially allows one to control the 
amount of remanent magnetization orthogonal to the inducing 
field during the inversion. To facilitate this, Lelièvre and 
Oldenburg (2009a) use the following model objective function, 
 

222
qsp qspm
 WWW ρρφ ++= ,                 (17) 

 
where ρ  is an adjustable parameter, and Wp, Ws, and Wq are 
model weighting matrices corresponding to commonly used 
model objective functions consisting of a smallness term and 
three flatness terms. When 0→ρ , there is no restriction on the 
size of the s- and q- components; while when ∞→ρ  the 
magnetization is aligned with the inducing field direction. The 
component parallel to the ambient field is often predominantly 
induced. The choice of ρ  value is dictated by the available prior 
information, so this parameter becomes a versatile vehicle for 
imposing different constraints. 
 
Lelièvre and Oldenburg (2009a) discuss in detail how to impose 
various types of prior information such as known total 
magnetization direction, measured magnetic susceptibility, 
measured Königsberger ratio (Q), or estimated remanent 
magnetization direction.  
 
An example of magnetization vector inversion is shown in 
Figure 14 (after Lelièvre and Oldenburg, 2009a). The model 
consists of two parallel rectangular bodies with NW and NE 
magnetization directions. Because of the proximity of the two 
sources, their total-field anomalies merge (Figure 14a – top). 
The total magnetization inversion is able to recover the source 
region of high magnetization strength (Figure 14 - bottom). The 
magnitude of the magnetization exhibits a smooth variation 
whereas the recovered magnetization directions are distinctly 
different in the west and east part of the model. This example 
also illustrates the importance and potential utility of 
magnetization direction recovered from the inversion. Although 
the recovered magnetization strengthen does not indicate the 
presence of two separate causative bodies in this example, the 
magnetization directions clearly shows that two different source 
regions are present. 
 
Figure 15 shows the result Lelièvre and Oldenburg (2009a) 
obtained from inverting a set of field data acquired in southern 
hemisphere. The total-field anomaly map shows two distinct 
negative anomalies without visible positive lobes, which 
indicates clearly the presence of strong remanent magnetization. 
Their magnetization inversion was necessary to invert this data 
set and recover the two separate source bodies. Although not 
reproduced here, the magnetization in one part of the model 
deviates significantly from the inducing field direction in 
contrast to the rest of model. The difference suggests that part of 
the magnetic body is distinctly different. 
 

 

 
 
Figure 15: Field example of magnetization inversion using the 
parametrization in the inducing-field reference frame (Lelièvre 
and Oldenburg, 2009). Top panel shows the total-field anomaly 
with two negative anomalies. The inducing field direction at the 
site is I=-32.2º and D=-0.8º. The lower panel shows the 
magnitude of recovered magnetization. (Image courtesy of P. 
Lelièvre). 

Compact Magnetization Inversion 
Ellis et al. (2012) developed a similar approach to invert total-
field magnetic data to recover a 3D distribution of total 
magnetization vector. They employed a Tikhonov regularization 
formulation and used a standard data misfit function as well as a 
model objective function emphasizing compactness of the 
magnetization vector model. Although the details of the 
algorithm are not available in published literature, the numerical 
results in synthetic and field examples show coherent 
magnetization directions. MacLeod and Ellis (2013) further 
illustrate the algorithm by applying it to different data sets and 
compare the result with unconstrained susceptibility inversion. 
 
Figure 16 from MacLeod and Ellis (2013) compares the result 
using magnetic vector inversion algorithm with an 
unconstrained susceptibility inversion that allows the 
susceptibility to be either negative or positive. The negative 
values would be equivalent to a reversed magnetization which 
could have arisen during a magnetic field reversal.   
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Figure 16: North-south cross-section through the unconstrained 
susceptibility model (top) and magnetization model (bottom) 
produced by MacLeod and Ellis (2013), displayed below the 
topographic surface with geology overlay. The magnetization 
vector is shown as cones in both cases together with the 
isosurfaces of effective susceptibility. The warm color indicates 
higher magnetization magnitude. (Image from MacLeod and 
Ellis, 2013). 
 
The unconstrained susceptibility inversion produces two zones 
with significant susceptibility, one with negative values and the 
other with positive values. Such a model is inconsistent with the 
single causative body associated with the ore body expected 
from known geology. Using the algorithm that favors 
compactness of magnetization anomaly, the inversion is able to 
produce a single dipping causative body, which is more 
interpretable geologically. The corresponding magnetization 
directions vary coherently within the body and a portion of them 
significantly different from the ambient magnetic field direction. 
In this case the inversion appears to have produced an 
improvement over conventional susceptibility inversion.  

Cooperative and Sequential Inversion for Magnetization  
As discussed earlier, the amplitude data are strictly independent 
of magnetization direction in 2D (Nabighian, 1972).  Liu et al. 
(2013) leverage this property and apply amplitude inversion 
(Shearer, 2005; Li et al., 2010) to vector borehole data with a 
2D-source assumption. The authors compute the amplitude data 
from vector magnetic data recorded in the boreholes. An 
interesting and practically important aspect of their work is the 
fact that the amplitude data are computed from directly 
measured components.  
 
Liu et al. (2013) discretize the 2D section between boreholes 
into a set of contiguous rectangular cells and assume a constant 
magnetization magnitude for each cell. They seek to recover 
magnetization magnitude models with a data misfit below a 
user-specified threshold to image the spatial extent of the 
causative bodies. Given a magnetization magnitude model, the 
observed vector magnetic data are inverted in a second step to 
predict magnetization direction. 
 

 
 

Figure 17: A synthetic illustration of 2D magnetization 
inversion using amplitude data (blue profiles in low-right panel) 
derived from borehole vector magnetic measurements. The top-
left panel shows the magnetization magnitude recovered from 
amplitude data; the lower-left and top-right panel show the 
inclination and projection of magnetization vectors recovered 
from fitting the vector magnetic data. (Image from Liu et al. 
2013). 
 
Figure 17 is a synthetic illustration of the method by Liu et al. 
(2013) using two causative bodies located between two vertical 
boreholes. As a technical demonstration, Figure 18 shows 
application of the method to amplitude and vector magnetic data 
in three boreholes intersecting a dipping massive magnetite 
body.  
 
Liu et al. (2015) extend this approach to surface 2D data by first 
inverting the amplitude data for the magnetization magnitude 
and then use a cross-correlation between observed and predicted 
total-field anomaly to estimate the magnetization direction. The 
assumption is that multiple causative bodies have the same 
magnetization direction.  
 

 
 

Figure 18: Field 2D data example from Liu et al. (2013) 
showing (a) the magnetization direction after second stage 
fitting of vector magnetic data and (b) recovered magnetization 
magnitude model after inversion of borehole amplitude data. 
(Image from Liu et al 2013). 

Gramian-Constrained Inversion 
Zhu et al. (2015) develop a Gramian-constrained magnetization 
inversion algorithm. The algorithm essentially requires that a 
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component of the magnetization is linearly correlated with the 
magnitude of the magnetization through the minimization of a 
quantity termed Gramian as a part of the objective function.  The 
Gramian is a measure of similarity between vectors. For the 
vectors 

eκ
  and 

xκ
 , the Gramian, SGx, is defined by an inner 

product matrix, 
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where 

eκ
  and 

xκ
  could for example contain respectively the 

magnitude and x-component of the magnetization in the model. 
To better understand the Gramian, note that it can be expressed 
as, 
 

θκκ 222 sinxeGxS =                                  (19) 

 
where θ  is the angle between the two algebraic vectors. 
Therefore to minimize the Gramian between two model vectors 
is to optimize the angle between the two model vectors so they 
are either maximally aligned or anti-parallel.  
 
Zhu et al. (2015) include Gramians associated with the three 
magnetization components in their objective function and 
minimize them in a Tikhonov regularization formulation 
(equation 15). The minimization of Gramians acts to enhance 
coherency of magnetization directions of model cells. 
Magnetization inversion with Gramian constraints may be 
applicable for inversion of a single anomaly or of multiple 
anomalies with same total magnetization direction.  
 
Figure 19 shows the comparison between the true and recovered 
magnetization model from a minimum Gramian inversion. Three 
components of the models are shown in one cross-section. The 
Gramian constraint has produced a magnetization distribution 
that is quite consistent with the dipping slab in the true model 
despite the lack of any constraints on the shape of the source 
body. 
 

 
Figure 19: Synthetic example illustrating the Gramian-
constrained magnetization inversion. The top row shows the 
three components (in effective susceptibility) of a 3D dipping 
slab. The bottom row shows the corresponding components in 
the inverted model. (After Zhu et al., 2015). 

Oriented Mixed-Norm Inversion 
In their extensive research on magnetization inversions, Fournier 
(2015) and Fournier et al (2016a, 2016b) have focussed on 
sparse mixed-norm objective functions. The strategy is 
complementary to many efforts in the last decade in that the 

authors identify necessary parameters for data-set adaptive 
model objective functions to refine the structural definition of 
the recovered magnetization model, which in turn restricts the 
admissible variations of magnetization directions.  
 
The model objective functions are designed to control two 
model characteristics, namely, the strike and dip of the causative 
bodies (orientation) and the smallness and flatness of the 
recovered model (sparseness).  The orientation defined by the 
strike and dip of subsurface anomalous bodies are adaptively 
applied to different regions of the model domain through local 
rotations of the coordinate system for calculating the derivatives 
in the flatness terms, while the sparseness is controlled by 
applying different Lp norms to the smallness and flatness 
components.  
 
The model objective function is given by, 
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where m is the model, which could either be the magnitude of 
the magnetization or the magnetization vector, and mref the 
corresponding reference model. The exponents p and q are 
applied in the norms for the smallness and flatness terms, 
respectively, and they are chosen to be different to incorporate 
specific prior information. The variables x1, x2, and x3 are the 
rotated local coordinate axes at each location in the 3D model 
and they are different from the fixed user coordinate system 
(e.g., Li and Oldenburg, 2000b; Lelièvre and Oldenburg, 
2009b).  
 
The rotated local coordinates are aligned with the structural 
orientations of the model features to be recovered. The flatness 
or blockiness can be imposed adaptively at different locations 
within the model based on the information about the model 
structures and their orientations, which can be available a priori 
or estimated from the magnetic data. Fournier et al (2016a, 
2016b) devise an elaborate scheme to compute the partial 
derivatives using a finite difference stencil involving 26 forward 
and backward finite differences. The parameters q and p indicate 
different norms for the smallest model and the flatness terms.  
 
Fournier et al (2016a, 2016b) also explicitly choose to use 
different values for exponents p and q to take advantage of 
compact L0 and blocky Lp norm (1 < p < 2) in equation 20 (e.g., 
Sun and Li, 2014). The flatness terms in the rotated local 
coordinates enable the construction of models with blocky and 
smooth features in arbitrary orientations through the L2 norms, 
while the compact L0 norm in the smallness term favors 
construction of sparse models. Thus, a common choice of the 
authors is p=0 and q=2. 
 
The sparsity and coherency of recovered magnetization 
anomalies in the model domain then implicitly place a strong 
constraint on the variability of the magnetization direction, 
which enables the recovery of magnetization models with 
coherent directions from inverting total-field magnetic 
anomalies. 
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To implement the mixed-norm objective function, the authors 
employ the Ekblom norm (Ekblom, 1973) and its numerical 
solution by the iteratively reweighted least-square approach 
(IRLS), which the authors further improve by introducing a 
scaling term in the reweighting factor. The approach is termed 
the scaled-IRLS (S-IRLS) (Fournier, 2015; Fournier et al., 
2016a, 2016b). 
 
Using such a highly adaptive model objective function and the 
improved numerical solution strategy S-IRLS, the authors 
develop a cooperative magnetization inversion. The starting 
point is the magnetization magnitude recovered by inverting the 
amplitude data. Fournier (2015) and Fournier et al. (2016a) then 
use that magnitude model only as a constraint in a full 
magnetization inversion with mixed-norm model objective 
function to achieve much more focused magnitude distribution 
with well-defined magnetization directions. 

Synthetic and Field Examples 
An example that highlights the capability of the mixed-norm 
inversion relates to inversion of the model in Figure 20, shown 
in a 3D perspective view and two sections. The model consists 
of two causative bodies with highly variable magnetization. The 
first is a simple block, and the second is a curved dyke with 
magnetization direction varying over a range of 90º. Figure 21 
shows the corresponding total-field anomaly data simulated 
from this model. Figure 22 shows the inverted magnetization 
model (both magnitude and direction) through the cooperative 
magnetization inversion. Both the shape of the causative bodies 
and the magnetization direction in the inverted model are highly 
consistent with the true model in Figure 20. The magnetization 
direction is constrained implicitly by the requirement for the 
magnetization to reproduce the magnetic data and be confined in 
the compact regions with specific spatial orientations. If one 
considers the shape of the arcuate source to be formed by 
folding, this inversion is interesting in that it has recovered a 
case of pre-folding remanence. 
 

 
Figure 20: Perspective view and sections through the synthetic 
magnetization model. The arc-shaped anomaly is magnetized at 
an inclination of 45º and variable declinations between [-45º, 
45º]. (Image form Fournier, 2015). 
 

 
Figure 21: Data generated from the synthetic magnetization 
model. The two panels show respectively the accurate and noisy 
data. The latter is contaminated by random Gaussian noise with 
a 1 nT standard deviation. (Image form Fournier, 2015). 
 

 
 

Figure 22: (a) Isosurface (0.01 SI) of effective susceptibility, 
and (b) sections A and B through the recovered magnetization 
model from the cooperative magnetization inversion algorithm. 
The depth extent of the causative bodies is indicated by both the 
color-coded elevation and the cross-section BB”. Compact 
norms (p = 0; q = 2) were applied during the amplitude 
inversion. (Image form Fournier, 2015). 
 
As a field example, the authors apply the algorithm to the well-
known data set from Osborne copper-gold deposit, Australia. 
The data and a geologic cross-section are shown in Figure 23. 
This is a case with strong self-demagnetization so the 
magnetization direction is unknown and highly variable. Figure 
24 shows the magnetization magnitude recovered from the 
amplitude data inversion using the mixed-norm objective 
function in the rotated coordinate systems and the corresponding 
magnetization model from the cooperative inversion using the 
mixed norms. Local coordinate systems aligned with the model 
features are obtained from the analyses of the magnetic data. 
The result is highly representative of the true source regions and 
associated magnetization directions. From the standpoint of 
matching the inverted magnetization magnitude with the known 
structure of the deposit, this inversion is one of the best results 
from magnetic inversion at this site. 
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Figure 23: (a) Airborne magnetic data over the Osborne copper-
gold deposit, Queensland. (b) Geological cross-section along A-
A’. (Fournier et al, 2016a). 
 

 
Figure 24: (a) Recovered effective susceptibility model from 
the amplitude inversion using a rotated sparse norm 
regularization, and (b) magnetization model from the 
cooperative magnetization inversion method. Each black dot 
with a line segment indicates a magnetization direction. 
(Fournier et al, 2016a). 

Magnetization Inversion Using Fuzzy C-Means (FCM) 
Clustering 

Li and Sun (2014, 2016) choose to impose a statistical constraint 
on the magnetization directions to explicitly restrict their 
variations, and develop an algorithm that seeks to recover a 
smooth magnetization model while allowing a small group of 
coherent magnetization directions. 
 
Generalized inversion for magnetization allows each cell in the 
model to have its individual direction for maximum flexibility. 
The actual magnetization in geological units is often assumed to 
be rather uniform on the scales resolvable by magnetic data. If 
the magnetization of one geologic unit (or a large portion 
thereof) is uniform in direction, then directions should be 
constrained as a region-wise constant function during inversion. 
The inverted model should be characterized by a small number 
of magnetization directions, although these directions may be 
unknown prior to inversion.  
 
This is precisely the type of constraint that the fuzzy c-means 
(FCM) clustering (e.g., Bezdek, 1981) can easily impose. Li and 
Sun (2014, 2016) use FCM to limit the magnetization directions 
to a small group of clusters in the same way that limits physical 
properties in a smooth inversion to a small number of values 
(e.g., Sun and Li, 2011; Lelièvre et al., 2012; Carter-McAuslan 
et al., 2015; Sun and Li, 2015). Li and Sun (2014, 2016) 
demonstrate the feasibility of FCM clustering for magnetization 
inversion and explore its potential for geology differentiation. 
 

To work with the magnetization and its direction directly, Li and 
Sun (2016) employ the discretization scheme shown in 
equations 12 and 13, and additionally work with the unit vector 
of magnetization in each cell, 

jĴ . 

 
The basic formulation of FCM-constrained magnetization 
inversion relies on the Tikhonov regularization and minimizes 
the total objective function in equation 15.  
 
Given the assumption that the recovered magnetization should 
only align in a small number, c, of possible directions, Li and 
Sun (2016) add the following FCM term to the objective 
function in the Tikhonov regularization inversion, 
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where 

jĴ is the unit vector in the magnetization direction in the 

jth model cell, 
kv̂ is the  magnetization direction for the kth 

cluster found by the inversion, 
kt̂  is the kth dominant 

magnetization direction supplied as prior information, and 
jku is 

the probability that 
jĴ  belongs to the kth cluster.  The 

membership function and cluster centers are the unknowns 
determined through the minimization of equation 21. The key to 
this algorithm is the choice of parameter c, which can be chosen 
based on priori information or through analyses by varying it in 
the inversion (Li and Sun, 2016). 
 
In the absence of prior direction information, we may set 0=η  
in equation 21. In that case the FCM objective function 

fcmφ
simply seeks to cluster the direction into c groups and find the 
cluster centers kv̂  in the inversion process. This is the generic 
FCM inversion. When prior information about the directions is 
available, 0>η  and the second term in equation 21 favours 
clusters close to the 

kt̂  directions. This approach is referred as 
the guided FCM clustering by Sun and Li (2015). 
 
The objective function ultimately minimized is, 
 

fcmmd mmm γφβφφφ ++= )()()(  ,                  (22) 

 
where the parameter γ determines the relative importance of the 
FCM component. The regularization parameter β is chosen 
based on the desired data misfit, and the parameters γ and η are 
either prescribed a priori or determined during the inversion. 
The choice of these parameters remains an area of active 
research. 
 
By combining the objective functions from (15) and (21), an 
inverted magnetization is sought with minimum structure 
spatially, and a small number of directions, and reproducing the 
magnetic data to within the error tolerance. 
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Figure 25: A set of synthetic total-field anomaly data produced 
by two causative bodies with different total magnetization. The 
inducing field has direction (I, D)=(65º,-25º). 

Synthetic and Field Examples 
Figure 25 shows a synthetic total-field data set produced by two 
source bodies whose magnetizations have similar magnitude but 
distinctly different directions. The rotation of the negative 
region away from declination in the southern anomaly and the 
dominantly negative northern anomaly indicate that 
magnetization directions of both source bodies are significantly 
different from the inducing field direction.  
 

 

 
Figure 26: Magnetization directions recovered using the generic 
FCM clustering assuming two clusters. Top: The azimuth in the 
polar plot shows the declination of the magnetization direction 
and the radial axis shows the inclination with 90º in the center. 
Positive inclinations are plotted as red and negative as green. 
The inducing field direction is shown as the black +, the true 
magnetization directions of the two bodies are shown 
respectively as green and red triangles. Bottom: Corresponding 
3D magnetization model with a cutoff value of 0.01 SI for the 
effective susceptibility.  

Generic FCM clustering inversion was applied, assuming two 
magnetization directions (c=2). The recovered magnetization 
clusters corresponding to the two anomalies are displayed in a 
polar plot in Figure 26. The 3D magnetizations are also 
displayed in a perspective view as cones colored according to 
the effective susceptibility. Only cells with effective 
susceptibility above 0.01 SI are shown. The inverted 
magnetization is spatially coherent within the each causative 
body.  
 
The markedly different magnetization directions suggest that the 
two sources could be geologically distinct. Although the 
difference in the magnetization can be inferred from visual 
inspection of the magnetic data, the quantification of the 
directions through inversion could provide more useful 
information. In practical application, such a result coupled with 
the magnetization magnitude could provide enough information 
to differentiate between different geological units. That is, they 
might have different geological origins or have gone through 
different structural movements relative to each other. 
 
As a field example, Li and Sun (2016) invert the field data 
shown in Figure 4 to account for all anomalies. Figures 27 and 
28 show the inversion result when three clusters are assumed, to 
account for the clearly reversely magnetized central anomaly, 
and the surrounding positive anomalies that may have remanent 
or purely induced magnetization. 
 
The inverted magnetization directions displayed in Figure 27 
show a cluster with an approximately -90º inclination 
corresponding to the central anomaly, a cluster with 36º 
inclination, and a third aligned with the nearly vertical inducing 
field. Examining the vector plot of the inverted magnetizations 
(Figure 28) reveals group-wise spatial coherency within the 
model domain such that magnetization direction is consistent 
within contiguous groups of model cells.  
 
Both the synthetic and field data examples highlight an 
important strength of such a statistically constrained 
magnetization inversion, namely that multiple clusters can be 
specified without necessarily identifying the locations within the 
model to which each direction is applied.  
 

 
Figure 27: Polar plot of magnetization direction obtained from 
inverting the field data in Figure 4 by using a generic FCM 
algorithm with c=3. The inversion recovers one cluster with 
negative inclination (green dots) and two clusters with positive 
inclinations (red dots). 
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Figure 28: Vector plot of the recovered magnetization 
corresponding to that shown in Figure 27. The central cluster 
has a nearly -90º inclination and corresponds to the central 
negative anomaly in the data (Figure 4). 

GEOLOGY DIFFERENTIATION USNG 
MAGNETIZATION DIRECTIONS 

It has long been recognized that magnetization contains more 
information than can be extracted from its magnitude alone. The 
direction information has been used widely in the solid earth 
geophysics (e.g., Francheteau et al., 1970; Cordell and Taylor, 
1971; Sager and Keating, 1984; Hildebrand and Staudigel, 
1986). The magnitude of magnetization helps define the spatial 
shape and extent of the causative bodies and serves as indicator 
of volume fraction of magnetic minerals and, hence, lithology, 
while the magnetization directions could distinguish between 
different causative bodies with origins or having undergone 
different geological processes. Consequently, 3D magnetization 
inversion represents an attempt to fully utilize the information 
contained in magnetic data in the presence of remanent 
magnetization and, thereby, to assist in geology differentiation-
based interpretation. 
 
Deriving geological insights from analysis of magnetization is 
not a new idea, but now the field is at the stage where this 
objective approach can be pursued with the plethora of 
magnetization inversion algorithms. For instance, Lelièvre and 
Oldenburg (2009a) observe in a field data case that one part of 
the recovered model has significant magnetization perpendicular 
to the inducing field whereas the rest has little. It is clear that the 
two parts would be geologically different even if the magnitudes 
of magnetization are indistinguishable between the two.  
 
To further illustrate this potential, we present an example of 
geology differentiation from Li and Sun (2016) for the data set 
shown in Figure 4. As the results in Figure 27 and 28 indicate, 
distinct magnetization directions are recovered when assuming 
three clusters. Thus, the model cells belonging to each cluster or 
dominant direction can be assigned as one distinct category of 
geological units. This is shown in Figure 29. Furthermore, the 
authors also attempt to calculate a confidence measure for the 
differentiation result from the consistency of recovered 
magnetization direction among inversions using different 
assumed numbers of clusters instead of attempting to determine 
an optimal number. Such differentiation of subsurface magnetic 
sources can then be interpreted more geologically instead of just 
magnetically. 
 

 

 
 

Figure 29: Top: Geology differentiation result based on the 
magnetization inversion of data in Figure 4 assuming three 
dominant directions. Category-0 corresponding to the 
background is not displayed.  Bottom: confidence measure (1.0 
being the highest) estimated from the variability of 
magnetization inversions assuming different numbers of 
possible directions. 
 
Such efforts by various researchers are but a small step towards 
this exciting and potentially fruitful direction. The available 
examples in literature are limited at this point, but there is 
significant potential for deriving new information that are not 
available from visual inspection of data or interpretation based 
purely on magnetization magnitude. By using both magnitude 
and direction of magnetization, we may be able to address 
questions such as: (1) Do two different causative bodies have 
different origin or time of emplacement?; (2) Are their current 
magnetization directions consistent with the geological 
movement that produced the current structure?; or (3) Can we 
infer such structural movement using recovered magnetization 
directions and methodologies employed in paleomagnetic 
studies? We anticipate that such effort may be one of the major 
directions in the use of magnetization inversion in the coming 
decade.  

CONCLUSIONS AND DISCUSSIONS 
Generalized inversions for susceptibility developed in the 1990s 
brought about a paradigm change in the quantitative 
interpretation of magnetic data in exploration problems in the 
decade prior to Exploration ‘07. With the increased use of 
inversions, the challenges posed by the presence of remanent 
magnetization also came to the forefront. Consequently, much 
effort has been expended on this aspect of magnetic inversion in 
the last decade, and a plethora of approaches has been 
developed. 
 
Several sophisticated parametric inversions using mixed-
parametrizations with geometrically simple objects have been 
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developed that essentially pre-empty the challenges associated 
with the ambiguity introduced by the magnetization direction. 
These algorithms are now capable of handling complicated 
magnetic anomalies in practice. 
 
The mixed susceptibility-magnetization inversion using the 
flexible vertical prism discretization of the model and 
incorporating specific geological boundaries represents a unique 
category that sequentially inverts for the susceptibility, remanent 
magnetization, and explicit geological boundary.  
 
Generalized inversions that recover magnetization as a function 
spatial position, on the other hand, contend with the ambiguity 
in order to maintain the flexibility of the algorithms and develop 
different strategies to tackle the difficulty associated with the 
unknown magnetization direction. Within this, three categories 
of methods have been developed:  (1) using estimated 
magnetization direction in susceptibility inversion, (2) inversion 
of direction-insensitive data such as magnetic anomaly 
amplitude and normalized source strength, and (3) 
magnetization inversion with different constraints. The majority 
of advances have occurred in the Category-3, which seeks to 
invert for magnetization as a vector function in 2D or 3D. We 
have discussed six approaches. The commonality is that they all 
impose some type of constraints on the variability of the 
recovered magnetization direction, either explicitly or implicitly. 
 
Any magnetic data acquired in mineral exploration can now be 
inverted to construct a subsurface distribution of magnetization, 
either its magnitude or both magnitude and direction. Thereby, 
all magnetic data can be interpreted in a quantitative manner. It 
is now high time to utilize these advances made in the last 
decade. It is also important to understand the limitations and 
practical applicability of these methods.  
 
Each method relies on one or more constraints based on general, 
conceptual, or site-specific prior information. For example, the 
parametric inversions relies on interactive modelling with 
multiple objects and works well with detailed investigation of 
specific magnetic anomalies; the mixed susceptibility-
magnetization inversion requires site specific parameterization 
based on prior knowledge of geological structure information to 
fully utilize its potential. In terms of magnetization inversion, 
the approach of estimating the magnetization direction first is 
applicable to isolated compact anomalies; inversions of 
direction-insensitive amplitude data and NSS are inherently 
approximate in 3D and also require the conversion of total-field 
anomaly data to different forms; whereas the full magnetization 
inversion algorithms all require some constraint on the 
variability of magnetization directions or the relative magnitudes 
of induced and remanent magnetization. 
 
The variety of available methods may appear daunting, and it 
indeed reflects the challenges faced with the inversion of 
magnetic data in the presence of strong remanent magnetization. 
However, the variety also shows a collective strength and 
presents the opportunity to tackle this important issue and 
extract useful information for exploration. 
 
We have much to look forward to in the next decade. One 
interesting and potentially game-changing opportunity lies with 

the fact that, in addition to the information provided by the 
magnetization magnitude, the extra information embedded in the 
magnetization direction could be used to characterize source 
properties such as lithology through concentrations of magnetic 
minerals as well as to differentiate between different geological 
units. This possibility may foreshadow the next stage of 
development in magnetic interpretation. 

ACKNOWLEDGEMENTS 
I would like to thank P. Fullagar, D. Oldenburg, and J. 
McGaughey for their invitation to write this review. I would also 
like to thank D. Fournier, P. Fullagar, P. Lelièvre, D. Oldenburg, 
G. Pears, M. Pilkington, and M. Zhdanov for kindly providing 
some of the figures and/or data for generating figures used in 
this review paper. I am grateful for P. Fullargar’s significant 
editorial effort. I would like to thank all my students and 
colleagues with whom I have had the pleasure to work on or 
discuss the quantitative interpretation of magnetic data affected 
by remanence and self-demagnetization. 

REFERENCES 
Bezdek, J. C., 1981, Pattern recognition with fuzzy objective 
function algorithms: Plenum Press. 
  
Beiki, M., D. A. Clark, J. R. Austin, and C. Foss, 2012, 
Estimating source location using normalized magnetic source 
strength calculated from magnetic gradient tensor data: 
Geophysics, 77, J23–J37. 
 
Bhattacharyya, B. K., 1966, A method for computing the total 
magnetization vector and the dimensions of a rectangular block‐
shaped body from magnetic anomalies: Geophysics, 31, 74-96.  
 
Blakely, R., 1996, Potential theory in gravity and magnetic 
applications: Cambridge University Press. 
 
Carter-McAuslan, A., P. G. Lelièvre, and C. G. Farquharson, 
2015, A study of fuzzy c-means coupling for joint inversion, 
using seismic tomography and gravity data test scenarios: 
Geophysics, 80W1–W15 
 
Clark, D. A., 2014, New approaches to dealing with remanence: 
magnetic moment analysis using tensor invariants and remote 
determination of in situ magnetisation using a static tensor 
gradiometer, ASEG Extended Abstracts 2013. 
 
Clark, D.A., 2014, Methods for determining remanent and total 
magnetisations of magnetic sources – a review: Exploration 
Geophysics, 45(4), 271-304. 
 
Coleman, C.  and Y. Li, 2012, Quantitative Estimation of Error 
Level in Amplitude Inversion: 82nd Annual International 
Meeting, SEG, Expanded Abstracts, 5 p.  
 
Coleman, C., 2014, Refining magnetic amplitude methodology 
for use in the presence of remanent magnetization: MSc. thesis, 
Colorado School of Mines. 
 



  258     Processing / Inversion 

 

 

Cordell, L., and P.T. Taylor, 1971, Investigation of 
magnetization and density of a north Atlantic seamount using 
Poisson’s theorem: Geophysics, 36(5), 919-937.  
 
Dampney, C.N.G., 1969, The equivalent source technique: 
Geophysics, 34, 39-53. 
 
Dannemiller, N., and Y. Li, 2006, A new method for estimation 
of magnetization direction: Geophysics, 71, L69–L73. 
 
Davis, K., and Y. Li, 2013, Efficient 3D inversion of magnetic 
data via octree-mesh discretization, space-filling curves, and 
wavelets: Geophysics, 78, J61-J73. 
 
Davis, K., E. Haber, and D. Oldenburg, 2013, Large-scale 
magnetic inversion using differential equations and ocTrees: 
ASEG Extended Abstracts 2013. 
 
Dransfield, M., A. Christensen, and G. Liu, 2003, Airborne 
vector magnetics mapping of remanently magnetized banded 
iron formations at Rocklea, Western Australia: Exploration 
Geophysics, 34, 93–96. 
 
Ekblom, H., 1973, Calculation of linear best lp-approximation: 
BIT, 13, 292–300. 
 
Ellis, R.G., B. de Wet, and I.N. Macleod, 2012, Inversion of 
magnetic data for remanent and induced sources: ASEG 
Extended Abstracts 2012. 
 
Fedi, M., G. Florio, and A. Rapolla, 1994, A method to estimate 
the total magnetization direction from a distortion analysis of 
magnetic anomalies: Geophysical Prospecting, 42, 261–274. 
 
Foss, C., and K. B. McKenzie, 2009, Strategies to model a suite 
of remanent magnetization anomalies: ASEG Extended 
Abstracts 2009, 1-18. 
 
Foss, C., and B. McKenzie, 2011, Inversion of anomalies due to 
remanent magnetisation: An example from the Black Hill Norite 
of South Australia: Australian Journal of Earth Sciences, 58, 
391–405. 
 
Fournier, D., 2015, A Coperative Magnetic Inversion Method 
with Lp-norm Regularization: MSc Thesis, University of British 
Columbia. 
 
Fournier, D., K. Davis, and D. Oldenburg, 2016a, Cooperative 
magnetic inversion: 86th Annual International Meeting, SEG, 
Expanded Abstracts, 1531-1536. 
 
Fournier, D., D. Oldenburg, and K. Davis, 2016b, Robust and 
flexible mixed-norm inversion: 86th Annual International 
Meeting, SEG, Expanded Abstracts, 1542-1547. 
 
Francheteau, J., C. Harrison, J. Sclater, and M. Richards, 1970, 
Magnetization of pacific seamounts: A preliminary polar curve 
for the northeastern Pacific: Journal of Geophysical Research, 
75, 2035–2061. 
 

Fullagar, P.K., and G.A. Pears, 2007, Towards geologically 
realistic inversion, in B. Milkereit ed., Proceedings of 
Exploration 07, 444-460. 
 
Fullagar, P.K., G.A. Pears, and B. McMonnies, 2008, 
Constrained inversion of geological surfaces - pushing the 
boundaries: The Leading Edge, 27, 98-105. 
 
Fullagar, P.K., and G.A. Pears, 2013, 3D magnetic modelling 
and inversion incorporating self-demagnetisation and 
interactions: ASEG Extended Abstracts 2013.  
 
Fullagar, P.K., and G.A. Pears, 2015, Remanent magnetisation 
inversion: ASEG Extended Abstracts 2015. 
 
Gerovska, D., M. J. Araúzo-Bravo, and P. Stavrev, 2009, 
Estimating the magnetization direction of sources from 
southeast Bulgaria through correlation between reduced-to-the-
pole and total magnitude anomalies: Geophysical Prospecting, 
57, 491–505. 
 
Haney, M., and Y. Li, 2002, Total magnetization direction and 
dip from multiscale edges: 72nd Annual International Meeting, 
SEG, Expanded Abstracts, 735–738. 
 
Haney, M., C. Johnston,Y. Li, and M. Nabighian, 2003, 
Envelopes of 2D and 3D magnetic data and their relationship to 
the analytic signal: Preliminary results: 73rd Annual 
International Meeting, SEG, Expanded Abstracts, 596–599. 
 
Hansen, R. O., and R. S. Pawlowski, 1989, Reduction to the 
pole at low latitude by Wiener filtering: Geophysics, 54, 1607–
1613. 
 
Helbig, K., 1963, Some integrals of magnetic anomalies and 
their relationship to the parameters of the disturbing body: 
Zeitschrift für Geophysik, 29, 83–97.  
 
Hildebrand, J., and H. Staudigel, 1986, Seamount magnetic 
polarity and cretaceous volcanism of the Pacific basin: Geology, 
14, 456–458 
 
Hou, C., 1979, Using potential field transformation to build an 
interpretation system of gravity and magnetic anomalies (in 
Chinese): Geophysical and Geochemical Exploration, 2, 21–10. 
 
Kubota, R., and A. Uchiyama, 2005, Three-dimensional 
magnetization vector inversion of a seamount: Earth Planets 
Space, 57, 691–699. 
 
Leão-Santos, M., Y. Li, and R. Moraes, 2015, Application of 3D 
magnetic amplitude inversion to iron oxide-copper-gold deposits 
at low magnetic latitudes: A case study from Carajás Mineral 
Province, Brazil: Geophysics, 80, B13-B22. 
 
Lelièvre, P. G, 2009, integrating geologic and geophysical data 
through advanced constrained inversion: PhD thesis, University 
of British Columbia. 
 



Li, Y.             Advances in the 3D Inversion of Magnetic Data in the Presence of Remanent Magnetization     259 

 

 

Lelièvre, P. G., and D.W. Oldenburg, 2009a, A 3D total 
magnetization inversion applicable when significant, 
complicated remanence is present: Geophysics, 74, 3, L21–L30. 
 
Lelièvre, P.G. and D.W. Oldenburg, 2009b, A comprehensive 
study of including structural orientation information in 
geophysical inversions: Geophysical Journal International, 178, 
623-637. 
 
Li,Y., and D.W. Oldenburg, 1996, 3D inversion of magnetic 
data: Geophysics, 61, 394–408. 
 
Li, Y., and D.W. Oldenburg, 2000a, Joint inversion of surface 
and three-component borehole magnetic data: Geophysics, 65, 
540-552. 
 
Li, Y. and D.W. Oldenburg, 2000b, Incorporating geological dip 
information into geophysical inversions: Geophysics, 65, 148-
157. 
 
Li,Y., and D.W. Oldenburg, 2003, Fast inversion of large-scale 
magnetic data using wavelet transforms and a logarithmic 
barrier method: Geophysical Journal International, 152, 251–
265. 
 
Li, Y., and D. Oldenburg, 2010, Rapid construction of 
equivalent sources using wavelets: Geophysics, 75, L51-L59 
 
Li, Y., S. Shearer, M. Haney, and N. Dannemiller, 2010, 
Comprehensive approaches to the inversion of magnetic data 
affected by remanent magnetization: Geophysics, 75. L1–L11. 
 
Li, Y., Z. He, and Y. Liu, 2012, Application of magnetic 
amplitude inversion in exploration for volcanic units in a basin 
environment: Geophysics, 77, B219-B225. 
 
Li, S.L. and Y. Li, 2014, Inversion of magnetic anomaly on 
rugged observation surface in the presence of strong remanent 
magnetization: Geophysics, 79, J11-J19. 
 
Li, Y. and J. Sun, 2014, Total magnetization vector inversion 
using guided fuzzy c-means clustering: 84th Annual International 
Meeting, SEG, Expanded Abstracts, 1285-1290. 
 
Li, Y. and J. Sun, 2016, 3D magnetization inversion using fuzzy 
c-means clustering with application to geology differentiation: 
Geophysics, 81, J61-J78. 
 
Liu, S., X. Hu, T. Liu, J. Feng, W. Gao, and L. Qiu, 2013, 
Magnetization vector imaging for borehole magnetic data based 
on magnitude magnetic anomaly: Geophysics, 78, D429–D444 
 
Liu, S., X. Hu, Y. Xi, T. Liu, and S. Xu, 2015, 2D sequential 
inversion of total magnitude and total magnetic anomaly data 
affected by remanent magnetization: Geophysics, 80, K1-K12. 
 
Lourenco, J. S., and H.F. Morrison, 1973, Vector magnetic 
anomalies derived from measurements of a single component of 
the field: Geophysics, 38, 359–368. 
 

MacLeod, I.N. and R. G. Ellis, 2013, Magnetic Vector 
Inversion, a simple approach to the challenge of varying 
direction of rock magnetization: ASEG Expanded Abstracts 
2013.  
 
Medeiros, W.E., and J.B.C. Silva, 1995, Simultaneous 
estimation of total magnetization direction and 3D spatial 
orientation: Geophysics, 60, 1365-1377. 
 
Mendonça, C. A., 2004, Automatic determination of the 
magnetization–density ratio and magnetization inclination from 
the joint interpretation of 2D gravity and magnetic anomalies: 
Geophysics, 69, 938-948. 
 
Morris, B., H. Ugalde, and V. Thomson, 2007, Magnetic 
remanence constraints on magnetic inversion models: The 
Leading Edge, 26, 960-964. 
 
Mueller, E. L., W. A. Morris, P.G. Killeen, and S. Balch, 1997, 
Combined 3-D interpretation of airborne, surface, and borehole 
vector magnetics at the McConnell nickel deposit, in A.G. 
Gubins, ed., Proceedings of Exploration 97, 657-666. 
 
Nabighian, M., 1972, The analytic signal of two-dimensional 
magnetic bodies with polygonal cross-section: Its properties and 
use for automated anomaly interpretation: Geophysics, 37, 507–
517. 
 
Nabighian, M., 1984, Towards a three-dimensional automatic 
interpretation of potential field data via generalized Hilbert 
transforms: Fundamental relations: Geophysics, 49, 780-786 
 
Paine, J., M. Haederle, and M. Flis, 2001, Using transformed 
TMI data to invert for remanently magnetised bodies: 
Exploration Geophysics, 32, 238–242. 
 
Pedersen, L. B., 1978, Wavenumber domain expressions for 
potential fields from arbitrary 2-, 21/2-, and 3-dimensional 
bodies: Geophysics, 43, 626–630. 
 
Pedersen, L. B., and M. Bastani, 2016, Estimating rock-vector 
magnetization from coincident measurements of magnetic field 
and gravity gradient tensor: Geophysics, 81, B55-B64.  
 
Phillips, J. D., 2005, Can we estimate total magnetization 
directions from aeromagnetic data using Helbig’s formulas: 
Earth, Planets, and Space, 57, 681–689. 
 
Pilkington, M., 1997, 3-D magnetic imaging using conjugate 
gradients: Geophysics, 62, 1132–1142. 
 
Pilkington, M. and M. Beiki, 2013, Mitigating remanent 
magnetization effects in magnetic data using the normalized 
source strength: Geophysics, 78, J25-J32. 
 
Portniaguine, O, and M.S. Zhdanov, 2002, 3-D magnetic 
inversion with data compression and image focusing: 
Geophysics, 67, 1532-1541. 
 



  260     Processing / Inversion 

 

 

Pratt, D.A., K.B. McKenzie, and A.S. White, 2012. The remote 
determination of magnetic remanence: ASEG Extended 
Abstracts 2012. 
 
Roest, W. R., J. Verhoef, and M. Pilkington, 1992, Magnetic 
interpretation using the 3-D analytic signal: Geophysics, 57, 
116-125.  
 
Roest, W., and M. Pilkington, 1993, Identifying remanent 
magnetization effects in magnetic data: Geophysics, 58, 653–
659. 
 
Sager, W., and B. Keating, 1984, Paleomagnetism of Line 
Islands seamounts: Evidence for late cretaceous and early 
tertiary volcanism: Journal of Geophysical Research: Solid 
Earth, 89, 11135–11151 
 
Schmidt, P.W., and D.A. Clark, 1998, The calculation of 
magnetic components and moments from TMI: A case study 
from the Tuckers igneous complex, Queensland: Exploration 
Geophysics, 29, 609–614. 
 
Schmidt, P., D. Clark, K. Leslie, M. Bick, D. Tilbrook, and C. 
Foley, 2004, GETMAG a SQUID magnetic tensor gradiometer 
for mineral and oil exploration: Exploration Geophysics, 35, 
297–305. 
 
Shearer, S., 2005, Three-dimensional inversion of magnetic data 
in the presence of remanent magnetization: M.Sc. thesis, 
Colorado School of Mines. 
 
Shearer, S., and Y. Li., 2004, 3D Inversion of magnetic total-
gradient data in the presence of remanent magnetization: 74th 
Annual International Meeting, SEG, Expanded Abstracts, 774–
777. 
 
Shi, Z., M. den Hartog, L. Pryer, Y.P. Djomani, and K. Connors, 
2013, A new technique for low magnetic latitude 
transformation: Synthetic model results and examples.: ASEG 
Extended Abstracts 2013.  
 
Silva, J. B. C., and G.W. Hohmann, 1981, Interpretation of three 
component borehole magnetometer data: Geophysics, 46, 1721–
1731. 
Stavrev, P. and D. Gerovska, 2000, Magnetic field transforms 
with low sensitivity to the direction of source magnetization and 
high centricity: Geophysical Prospecting, 48, 317-340. 
 
Sun, J., and Y. Li, 2011, Geophysical inversion using 
petrophysical constraints with application to lithology 
differentiation: 81st Annual International Meeting, SEG, 
Expanded Abstracts, 2644–2648. 
 
Sun, J., and Y. Li, 2014, Adaptive Lp inversion for simultaneous 
recovery of both blocky and smooth feature in geophysical 
model: Geophysical Journal International, 197, 882–899. 
 
Sun, J., and Y. Li, 2015, Multidomain petrophysically 
constrained inversion and geology differentiation using guided 
fuzzy c-means clustering: Geophysics, 80 (4), ID1–ID18. 
 

Wang, M. Q., Q. Di, K. Xu, and R. Wang, 2004, Magnetization 
vector inversion equations and forword [sic] and inverse [sic] 2-
D model study (in Chinese): Chinese Journal of Geophysics, 47, 
601–609. 
 
Watts, A., 1997, Exploring for nickel in the 90s, or ‘til depth us 
do part’, in A.G. Gubins ed., Proceedings of Exploration 97, 
1003-1014. 
 
Wilson, H. S., 1985, Analysis of the magnetic gradient tensor: 
Defence Research Establishment Pacific, Technical 
Memorandum 8, 5–13. 
 
Zhu, Y., M.S. Zhdanov, and M. Čuma, 2015, Inversion of TMI 
data for the magnetization vector using Gramian constraints: 
85th Annual International Meeting, SEG, Expanded Abstracts, 
1602-1606. 
 
 
 
 
 
 
 


	ABSTRACT
	INTRODUCTION
	Background
	Challenges Beyond Induced Magnetization
	Summary of Major Advances

	Parametric inversion
	Combined susceptibility-Magnetization inversion
	GENERALIZED MAGNETIZATION INVERSION
	Magnetization Direction Estimation
	Helbig’s Moment Method
	Cross-Correlation Methods
	A Field Example

	Inversion of Direction-Insensitive Data
	Inversion of Amplitude Data
	A Field Example
	Inversion of Normalized Source Strength

	Magnetization Inversion
	Magnetization Inversion in Inducing-Field Reference
	Compact Magnetization Inversion
	Cooperative and Sequential Inversion for Magnetization
	Gramian-Constrained Inversion
	Oriented Mixed-Norm Inversion
	Synthetic and Field Examples
	Magnetization Inversion Using Fuzzy C-Means (FCM) Clustering
	Synthetic and Field Examples


	geology Differentiation usng magnetization directions
	Conclusions and discussions
	acknowledgements
	references

