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ABSTRACT 
 
Inversions of geophysical data are becoming routine components of mineral exploration programs and can provide acceptable 
subsurface physical property models that can be interpreted in terms of the geometry and relative sizes and intensities of physical 
property anomalies. The only available link to actual geological interpretation of such models is a large database of physical property 
measurements on the rocks within the inversion volume. A more robust method for interpreting physical properties is to estimate the 
abundance of expected minerals within the rocks based on the physical properties of the rocks, the physical properties of the minerals 
and an understanding of the ore deposit models appropriate for the rocks of interest.  For most basement rocks the magnetic 
susceptibility and density of a sample are linearly related to the susceptibility and density of the constituent minerals. Measured or 
predicted susceptibilities and densities can therefore be used to identify and quantify the presence of minerals, especially sulphides, 
which have anomalous physical properties. With selection of appropriate minerals and their physical properties, and using linear 
programming techniques, we can extract estimates of mineral abundances from drill core property measurements or 3D inversion 
property models where the minerals of interest have significantly different physical properties from the host rocks.  Property 
measurements from the Perseverance komatiite-hosted nickel-sulphide deposit in Western Australia are used to test the mineral 
estimates against independent assessments of the mineralisation in the samples. The results provide realistic estimates of the possible 
range of Ni-bearing pentlandite in each sample; > 80 % of samples with known anomalous sulphide content were identified from their 
physical properties alone. Application of this procedure, with a different set of end-members, to geologically-constrained gravity and 
magnetic inversion models from the Olympic Fe-oxide Cu-Au province in South Australia demonstrates how it can be used to map, in 
3D, areas of potentially anomalous sulphide accumulation to aid exploration and target selection. 
 
 
 
 
 
 

INTRODUCTION 
 
Inversion of potential field data can readily provide models of 
the distribution of physical properties in the subsurface, but 
rigorous geological interpretation of those property models is 
challenging. For mineral exploration, qualitative interpretations 
may be based on associations expected for mineralisation or 
alteration, such as the existence of “coincident magnetic and 
density anomalies”. However, there is merit in assessing 
prospectivity more rigorously. Cross-plots of measured 
densities and susceptibilities can be used to help classify rock 
types and general alteration trends (Henkel, 1976; Puranen, 
1989; Henkel, 1994), and can provide some rapid insights into 
the rock characteristics and allow some broad classifications. 
However they only provide a graphical rather than a 
quantitative approach. Cluster analysis techniques provide a 
more quantitative method for classifying rock types and 
alteration trends, but do not allow for any direct inclusion of 
information about geological processes and characteristics.  

Quantitative methods for estimating mineralogy from 
remotely acquired reflectance spectra have been in use for 

more than two decades (Smith et al., 1985). These spectral 
unmixing techniques assume that a pixel’s observed reflectance 
spectra are linearly related to the abundance of various end-
member components within that pixel and use inversion to extract 
the component abundances from the observed band reflectances 
(Van der Meer and De Jong, 2000). Two of the most troublesome 
issues with spectral unmixing techniques are selecting the 
appropriate end-member components (Theseira et al., 2003) and 
correlation or similarity between end-member responses (Van der 
Meer and De Jong, 2000) and various strategies have been 
proposed to mitigate these problems. 

The unmixing approach may be applied to other data types, 
such as the densities and magnetic susceptibilities that are among 
the most commonly used geophysical datasets in mineral 
exploration. When limited to only two data, density and 
susceptibility, instead of multiple spectral bands the number of 
end-member components that can be uniquely resolved becomes 
severely limited. One mitigation strategy, known as partial 
unmixing, is to only extract the abundances of those end-member 
components that are most relevant for the questions being 
addressed (Boardman et al., 1995). All other components are 
lumped together as a single component containing everything else 
(Boardman et al., 1995); in our implementation to follow this 
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component will be the “host rock”. This method is particularly 
appropriate for densities and susceptibilities as most common 
rock-forming minerals have very similar densities and 
susceptibilities. Extremely high densities and susceptibilities 
are generally due to the sulphides and oxides that are of direct 
importance to mineral exploration. This association also 
provides us a better understanding of which end-member 
components need to be included in the unmixing calculation, 
thus eliminating the need for complex component selection 
algorithms.  

For Fe-oxide Cu-Au (IOCG) systems, Hanneson (2003) 
assumed that the physical properties of any rock were 
controlled by the abundance and physical properties of three 
end-member components: magnetite, combined hematite and 
sulphides, and the host rock (a fictitious pure end-member that 
contains no magnetite, hematite, or sulphides). He could then 
solve a simple system of three weakly non-linear equations for 
the abundance of each of the three end-members 
 

 mgt mgt hem hem host host samplef f fφκ κ κ κ+ + =
   (1) 

 mgt mgt hem hem host host samplef f fρ ρ ρ ρ+ + =
  (2) 

 
1mgt hem hostf f f+ + =

    (3) 
 
where κ is susceptibility, ρ is density, and f is the volume 
fraction of the component (from 0 to 1), κsample is the 
susceptibility of the sample, ρsample is the density of the sample, 
and φ is an empirical exponent that has been variously 
estimated at between 1.0 and 1.39 depending on the value of 
κmgt, the grain size of magnetite in the sample, and the method 
used for estimating fmgt (see compilation by Schön, 2004). 

Williams et al. (2004) showed that this method can be 
applied directly to the 3D density and susceptibility models 
derived from constrained gravity and magnetic inversions to 
map, in 3D, regions of anomalous hematite or sulphide 
accumulations which may be prospective for exploration. The 
physical properties included in a constraining reference model 
supplied to the gravity and magnetic inversions are used to 
derive the properties expected for barren host rock within each 
mappable rock unit. For each inversion cell, the density and 
susceptibility recovered by the inversions is used to estimate 
the abundance of each of the three end-member components by 
solving the system of three equations outlined above and in  

Figure 1. The results can then be displayed as 3D maps of 
magnetite, hematite and sulphide, or barren host rock 
abundance. 

This method may provide an acceptable first pass estimate 
of sulphide abundance for many sulphide-rich deposit styles, 
but there are several deficiencies with this approach. One is 
that many more minerals contribute to the physical properties 
of the rocks than the three end-member system allows. Sericite 
alteration is common in volcanic hosted massive sulphide 
(VHMS) and IOCG systems and the ultramafic host rocks in 
many nickel sulphide deposits are strongly serpentinised. These 
low density phases complicate the systematics of the three-end-
member mineralogy estimate by introducing a component that 
may have a lower density than the allowed host rock density. 
Such rocks have no possible solution in the three-end-member 
system (grey triangle in  

Figure 1). There may also be a range in the physical 
properties of each end-member mineral, or the properties of each 
mineral may be poorly known. The uncertainty associated with 
the physical properties recovered from inversions is also not 
taken into account.  

 
 

 
 
Figure 1: Graphical representation of the equations 1-3 depicting how the 
density and susceptibility of a sample may be used to estimate the volume 
proportions of each of three end-members. Valid solutions are only 
possible in the white triangle. Modified from Hanneson (2003). 
 

To address these issues, a new method of estimating 
mineralogy from physical properties is developed here. The 
method follows the approach of Gordon and Dipple (1999) who 
applied linear programming techniques to estimate mineral 
abundances from whole rock chemistry compositions. Although 
not intended to replace direct observation, we first demonstrate 
the applicability of our mineralogy unmixing method to different 
deposit styles, and test its accuracy, by applying it to actual 
measured densities and susceptibilities for drill core samples from 
the Perseverance komatiite-hosted nickel sulphide deposit in 
Western Australia’s Archean Yilgarn Craton. We then apply the 
technique to the results of regional-scale geologically-constrained 
inversions (originally developed by Williams et al., 2004) around 
the Olympic Dam IOCG deposit in South Australia’s Proterozoic 
Gawler Craton to assess the method’s use in targeting and ranking 
prospective targets for exploration at depth and under cover. 

 

METHOD 
 
If the volume fraction of magnetite in a sample is less than about 
0.1 (or 10 volume %), the empirical exponent φ in equation 1 
contributes little and the system is approximately linear (Clark, 
1997). Even for samples with > 0.1 volume fraction magnetite, a 
linear approximation only overestimates the abundance of 
magnetite slightly. For this reason, and the complexity and 
instability of nonlinear implementations (using quadratic 
programming methods), the linear approximation is deemed 
adequate. The general linear approximation of the system for n 
end-member components is 
 

  1

n

i i sample
i

fκ κ
=

=∑
        (4) 
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where κi and ρi are the susceptibility and density of mineral or 
component i, fi is the volume fraction of mineral or component 
i, and κsample and ρsample are the sample susceptibility and 
density. Thus when n > 3 the system is underdetermined and an 
exact solution for f cannot be obtained. In such 
underdetermined problems optimisation techniques can be 
applied to seek preferred solutions. Our use of linear 
programming is based on that presented by Gordon and Dipple 
(1999). 
 

LINEAR PROGRAMMING 
 
Linear programming is an optimisation method that seeks a 
solution that minimises some linear objective function subject 
to a finite number of linear inequality constraint equations. The 
inequality equations define an n-dimensional convex feasible 
region, or polytope, the vertices of which provide the set of 
possible solutions for the optimisation problem. The vertex that 
minimises the objective function is the optimal solution. For 
linear programming the standard form of equations is 
 

 
min F( ) such that 

≤

≤ ≤

⎧
⎨
⎩x

Ax b
x

lb x ub    (7) 
 
where F(x) is an objective function of the unknowns, x, of the 
form: 
 

 1 1 2 2F( ) ... n nc x c x c x= = + + +Tx c x
   (8) 

 
A is a matrix of coefficients to a set of inequality 

equations, b represents limiting values, lb and ub are vectors of 
the lower and upper bounds on possible values of x, and c is a 
vector of coefficients defining the objective function. 

Many linear programming algorithms are freely or 
commercially available. Throughout this work we use the CDD 
linear programming algorithm developed by Fukuda and 
Prodon (1996) after Motzkin et al. (1953) and interfaced to the 
Matlab software package (Mathworks Inc., Natick, 
Massachusetts) as CDDMEX by Torrisi and Baotic (2005).  

Inequality constraint equations 
 
To be included in the linear programming routine, the equality 
equations 4-6 must be transformed into the form Ax ≤ b used 
in the linear programming equation 7. From equations 4-6 and 
using the procedure of Gordon and Dipple (1999), we derive 
the six inequality equations 
 

max min max max

1 1

  and  
n n

i i sample i i sample
i i

f fκ κ κ κ
= =

− ⋅ ≤ − ⋅ ≤∑ ∑
      (9) 

max min min max

1 1

  and  
n n

i i sample i i sample
i i

f fρ ρ ρ ρ
= =

− ⋅ ≤ − ⋅ ≤∑ ∑
    (10) 

( ) ( )
1 1

1   and  1
n n

i i
i i

f v f v
= =

− ≤ − − Δ ≤ + Δ∑ ∑
     (11) 

 
These are the fundamental equations used to calculate the 

mineral abundances and can readily be written in the Ax ≤ b form 
required for linear programming algorithms, with x being a vector 
of the unknown component abundances fi.. The minimum and 
maximum susceptibility for each mineral or component are κi

min 
and κi

max , and the minimum and maximum densities are ρmin and 
ρmax.  The minimum and maximum sample densities and 
susceptibilities of the form ρmin 

sample and ρmax 
sample reflect the 

range of observed values for a sample; typically these may be 
defined in terms of ±2 standard deviations of measurements. The 
uncertainty defined by Δv allows the volume sum to vary within 
an appropriate number of significant figures; we set it to 0.001 or 
0.1 vol. %.  

Since the problem is underdetermined, the solution space may 
be infinitely large, and extra constraints may help refine the 
solution. The types of constraints available will vary depending 
on the deposit style and end-member components used, but will 
typically be based on limitations imposed by an understanding of 
the petrography and expected relationships between the minerals 
that might arise given a particular alteration or mineralisation 
style; this can come directly from ore deposit models. To be 
included in the calculation the constraints must be of the form Ax 
≤ b and will generally be based on observations of the form: 
“alteration minerals are more abundant than ore minerals,” or 
“mineral A is always more common than mineral B,” or “the 
abundance of mineral A is proportional to the abundance of 
mineral B.” Specific examples will be given with the examples 
below. 

In most linear programming implementations the lower and 
upper bounds on x are supplied to the linear programming 
algorithm as two vectors. The algorithms then transform the 
bounds vectors into addition inequality constraints of the form 
 

  and  i i i ix lb x ub− ≤ − ≤
.     (12) 

 

Model objective function 
 
Every vertex of the polytope defined by the inequality constraint 
equations outlined above is a valid solution to the optimisation 
problem. The optimal solution returned by the linear 
programming algorithm is defined by the vertex that minimises 
the supplied objective function F(x), so selection of an 
appropriate objective function is critical in recovering useful 
mineral estimates. 

Due to the underdetermined nature of the mineral estimation 
problem for more than 3 components, an exact solution cannot be 
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obtained. It is therefore unreasonable to expect the linear 
programming routine to provide a single ideal solution. Instead 
it is useful to define two objective functions that define the 
likely range of possibilities for a particular problem. For 
mineral exploration, an appropriate pair of objective functions 
would seek to minimise and maximise the abundance of ore 
sulphides thus providing an estimate of the range of ore 
sulphide abundances. Another pair of objective functions might 
seek to minimise and maximise the abundance of a particular 
alteration phase. 

By only seeking the possible range of mineral abundances, 
rather than an exact solution, many more end-member 
components can be included in the unmixing calculation than 
the three equations allow; however, as the number of 
components increases and the problem becomes more 
underdetermined, the extracted range of mineral abundances 
will widen, possibly reducing the effectiveness of the estimate. 
Therefore it remains important to select only those end-
member components that are most likely to control the physical 
properties of the rocks; this decision is best based on a 
geological understanding of the rocks. The abundance of minor 
phases not included in the calculation will add some small error 
to the calculated ranges of mineral abundances.  

Standard linear programming algorithms minimise an 
objective function of the form shown in equation 8. 
Maximising the value of an unknown component abundance, 
xi, is equivalent to minimising the value of –xi. The 
coefficients, ci, in the objective function equation 8 are 
therefore +1 or –1 depending on whether that component 
should be minimised or maximised respectively. 

 

APPLICATION TO DRILL CORE SAMPLES 
 
To demonstrate how the mineral estimates are obtained, and 
their accuracy, we first apply the method to a set of 144 drill 
core and surface samples from the Leinster komatiite-hosted 
nickel sulphide deposits. The Leinster group includes the 
Perseverance, Rocky’s Reward, and Harmony deposits which 
contain massive nickel sulphide basal horizons, disseminated 
intercumulus nickel sulphides, and tectonically remobilised 
sulphides, with a total underground resource of 33 Mt at 2.3 wt. 
% Ni and an open pit resource of 155 Mt at 0.6 % Ni (BHP 
Billiton Ltd., 2006). The sulphides are generally hosted within 
variously serpentinised Archean ultramafic cumulate and flow 
rocks within a regionally extensive greenstone belt that also 
includes basaltic and gabbroic rocks, felsic porphyry, volcanic 
and volcaniciclastic rocks, and sedimentary rocks that have all 
been metamorphosed up to amphibolite grade (Gole et al., 
1989; Libby et al., 1998). The greenstone belt is bounded by 
regional-scale fault systems which juxtapose the greenstones 
against several suites of voluminous granitoid rocks. The 
samples represent all major rock types in the area and all styles 
of nickel sulphide mineralisation, from weakly disseminated 
sulphides and sulphide stringers in ultramafic rocks to massive 
sulphides. Although detailed petrographic analysis of all the 
samples has not yet been completed, each sample has been 
visually classified in terms of its host rock, alteration styles, 
and sulphide abundance and style. 

To measure densities, the samples were dried for two days at 
110 °C, weighed, soaked in water for two days, weighed, and 
then weighed suspended in water. The susceptibility of each 
sample is the geometric mean of the susceptibilities of three 22 
mm × 22 mm × 22 mm cubes that were analyzed on either a 
Digico susceptibility bridge (for lower susceptibilities) or an 
AGICO KLY-3 kappabridge (for higher susceptibilities). 
Measured densities and susceptibilities for each sample were 
compared to the observed sample mineralogy to ensure that the 
measurements showed appropriate magnitudes. 

 

Components, their properties and bounds 
 
The densities and susceptibilities are plotted in Figure 2 with the 
seven components that are most likely to control the physical 
properties in such rocks: magnetite, serpentine, monoclinic and 
hexagonal pyrrhotite, pyrite, the nickel ore pentlandite, and 
barren host rock. It is noted that many other minerals with 
extreme physical properties may be present in small amounts, 
including chalcopyrite, ilmenite, chromite, and millerite, but their 
total abundance is generally < 2 vol. % and their exclusion will 
only add an equivalently small error to the result. In fact, many of 
these components will effectively be included in the estimates of 
other mineral components with similar properties: ilmenite and 
chromite will likely be included in the pyrite estimate; 
chalcopyrite will be partially included in the pentlandite estimate. 
The extents of the boxes in Figure 2 indicate the range of 
expected properties for each component. The minerals’ 
properties are based on published literature values ( 

Table 1). The density range allowed for the barren host rock 
component spans the range of densities observed for least-altered 
lithologies in the area regardless of rock type; the susceptibility 
range for the barren host rock component extends to 7 × 10-3 SI, 
the typical upper limit of rocks lacking ferrimagnetic minerals 
(Clark, 1997).   
 

 
Figure 2: Densities and magnetic susceptibilities of the 144 drill core 
samples in this study (black circles), and seven controlling components. 
Blue lines represent linear mixing lines between the geometric mean 
properties of each of the components – they appear curved because of the 
logarithmic susceptibility scale. 
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Table 1: Summary of the physical properties of the components that will control the physical properties of rocks associated with 
komatiite-hosted nickel sulphide deposits. Where conflicting ranges are reported in the literature, a representative range is used. 

Mineral Minimum 
density 
(g/cm3) 

Maximum 
density 
(g/cm3) 

Minimum 
susceptibility
(SI) 

Maximum 
susceptibility
(SI) 

References 

Barren host rock (allows for all 
likely host rock types) 

2.5 3.3 1.00 × 10-8 7.00 × 10-3 Densities based on physical property 
measurements in this study; susceptibilities 
based on diamagnetic and paramagnetic 
minerals (Clark, 1997) 

Serpentine 2.40 2.70 9.88 × 10-5 2.38 × 10-4 Chesterman and Lowe (1979), Bleil and 
Petersen (1982), Wohlenberg  (1982) 

Pyrite 5.00 5.04 3.50 × 10-5 5.27 × 10-4 Carmichael (1982), Hunt et al. (1995) 
Pentlandite 4.60 5.00 5.62 × 10-6 1.78 × 10-5 Wohlenberg  (1982), Emerson et al. (1999) 
Hexagonal pyrrhotite (Fe9S10) 4.57 4.67 1.05 × 10-3 2.01 × 10-3 Hunt et al. (1995), Emerson et al. (1999) 
Monoclinic pyrrhotite (Fe7S8) 4.57 4.67 0.13 1.30 Hunt et al. (1995), Clark (1997) 
Magnetite 5.10 5.20 3 8 Telford et al. (1990), Clark (1997) 
Term in equations 9 and 10 min

iρ  
max

iρ  
min

iκ  
max

iκ  
 

 
Table 2: Expected minimum and maximum abundances 
of each mineral for rocks from the Leinster area. 

Mineral Abbreviation Minimum 
abundance 
(vol. 
fraction) 

Maximum 
abundance 
(vol. 
fraction) 

Serpentine serp 0.0 1.0 
Pyrite py 0.0 0.15 
Pentlandite pen 0.0 0.3 
Hexagonal 
pyrrhotite 

poH 0.0 1.0 

Monoclinic 
pyrrhotite 

poM 0.0 1.0 

Magnetite mgt 0.0 0.1 
 

Our goal for these samples is to estimate the possible range 
of sulphide abundance in each sample and compare the 
estimates to visual estimates of sulphide abundance to assess 
the effectiveness of the mineral estimates at classifying 
sulphidic rocks as anomalous. Once the relevant components 
expected in the samples have been identified (above;  

Table 1), the next step is to identify the expected minimum 
and maximum abundance of each in the dataset. In general 
these may be 0.0 and 1.0 respectively (0 to 100 vol. %), but in 
many situations more restrictive ranges may be expected as 
shown for Leinster in Table 2. These values reflect many of the 
more extreme rocks that might exist; most rocks are unlikely to 
contain 100 vol. % serpentine or hexagonal or monoclinic 
pyrrhotite, so these upper and lower bounds are relatively 
loose. 

 

Objective functions 
 
We then define the two objective functions that will be used to 
extract the range of feasible solutions. For nickel exploration 
we are most interested in the abundance of the nickel ore 
pentlandite, so we will select one objective function to extract 
the mineralogy containing the maximum possible abundance of 
pentlandite (all ci = +1 are minimised, except cpen = –1 is 
maximised) 

1F ( ) mgt pen poH poM py serp hostx x x x x x x= = − + + + + +Tx c x
 (13) 

 
The second objective function will reproduce a barren host 

rock with as few sulphides as possible by maximising the volume 
fraction of barren host rock present in each sample 
 

2F ( ) mgt pen poH poM py serp hostx x x x x x x= = + + + + + −Tx c x
    (14) 

 

Additional constraint equations 
Several additional constraints are available that can be included in 
the formulation. For this example the information comes from 
knowledge of the typical sulphide mineral assemblage and the 
serpentinisation reaction observed in the ultramafic rocks. 
Previous workers have reported typical pyrrhotite to pentlandite 
ratios of 3:1 (Martin and Allchurch, 1975), 7.5:1 (Emerson et al., 
1999) and 11.5:1 (Duuring et al., 2007) for the Leinster nickel 
deposits. To encapsulate this range of variability in reported ratios 
we define a range of pyrrhotite to pentlandite ratios from 1:1 to 
15:1 with the following two constraint equations 
 

  pen poH poMx x x≤ +
      (15) 

  
15 pen poH poMx x x≥ +

     (16) 
 
which can in turn be included with equations 9-11 as two extra 
rows in the linear programming equation 7. 

Most of the rocks that host mineralisation are ultramafic 
rocks that have undergone varying degrees of serpentinisation 
whereby primary igneous olivine is replaced by serpentine and 
magnetite in the presence of fluids. Barnes et al. (1988) report 
that primary igneous olivine at Leinster has an average 
composition of Fo94 (Mg-number = 100 × MgO/[MgO+FeO] = 
94). Such Mg-rich olivine is likely to hydrate to Mg-rich 
serpentine plus minor magnetite. Without electron microprobe 
analyses of the serpentine at Leinster, two possible balanced 
serpentinisation reactions that provide a minimum and maximum 
amount of magnetite produced might be 
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 100 Fo94 + 147 H2O + ½ O2 → 
 50 serpentine100 + 1 magnetite + 47 brucite, (17) 
 
 100 Fo94 + 138 H2O + 2 O2 → 
 50 serpentine94 + 4 magnetite + 38 brucite, (18) 
 
where Fo94 represents the primary igneous olivine, 
serpentine100 and serpentine94 represent serpentine with Mg-
numbers of 100 and 94 respectively. Brucite [Mg(OH)2] is a 
common alteration by-product of serpentinisation but has a 
similar density to serpentine (Wohlenberg, 1982) so for the 
mineral estimation calculations it is treated as part of the 
serpentine component. For each of these two equations the 
molar ratio of [(serpentine + brucite) / magnetite] can be 
converted to a mass ratio and then a volume ratio of 
[(serpentine + brucite) / magnetite] to define an approximate 
range of such ratios that is possible. Assuming that the 
alteration system is closed (no net mass or elemental loss), and 
that the compositions specified in reactions 17 and 18 represent 
the full compositional range of the minerals, then this 
calculation provides a range of serpentine to magnetite volume 
ratios that can be expressed as 
 

35 mgt serpx x≤
,                 (19) 

150 mgt serpx x≥
,                 (20) 

 
again, assuming that all brucite is included in the serpentine 
component. These two equations can also be added as 
additional rows with equations 9-11 in the linear programming 
equation 7.  

In the mineral estimation calculation we provide no 
information regarding rock type or whether serpentinisation is 
present. Instead, by providing these constraints we are 
assuming that magnetite is only significant (>1 vol. %) in those 
samples where serpentinisation of ultramafic rocks has taken 
place. Where no serpentinisation has taken place but minor 
magnetite is present, such as in a granitic sample, this 
assumption fails and the calculation may give rise to an 
erroneous proportion of serpentine which, due to its low 
density, may allow an erroneous estimate of sulphide content 
resulting in a false positive anomaly. However, nearly all of the 
sulphides are hosted in serpentinised ultramafic rocks, and this 
constraint is critical in correctly identifying sulphides in these 
samples. 

 

Results 
 
The equations, objective functions, and the 144 rock samples’ 
property measurements are supplied directly to the linear 
programming routine as matrices. The results are presented in 
Figure 3. Each vertical bar represents one of the 144 individual 
rock samples. The bars are coloured by their actual sulphide 
content, either barren, trace disseminated sulphides, moderate 
disseminated sulphides, heavy disseminated sulphides, and 
massive sulphides. The tops and bottoms of each bar represent 
the solutions extracted using each of the two objective 
functions. The calculation clearly identifies the massive 

sulphide samples as having the most pentlandite, up to the upper 
bound of 0.3 vol. fraction, with correspondingly minimal silicate 
content, down to 0 vol. fraction. As the predicted sulphide content 
goes up, the predicted silicate content goes down. 

There is significant variability in the heights of the bars in 
Figure 3, but there is much less variability in the position of the 
bottoms of the bars, or minimum abundances. These minimum 
abundances indicate what must be required to satisfy the imposed 
constraints, and can be used as an effective conservative estimate 
of mineral abundance. Our goal in this assessment is to correctly 
identify ore sulphide-bearing samples based on their physical 
properties. The samples most likely to contain pentlandite would 
be those where the minimum predicted abundance of pentlandite 
is > 0.001 volume fraction (the Δv threshold for significant 
figures defined above). Those most likely to contain ore sulphides 
(pyrrhotite + pentlandite) would have > 0.001 volume fraction 
pyrrhotite + pentlandite. These criteria are shown in Figure 4 
where in each panel the samples have been sorted in order of 
increasing minimum ore sulphide content (top) or increasing 
minimum pentlandite content (bottom), with the 0.001 volume 
fraction cut-off identify by dashed line. The samples are coloured 
as in Figure 3, only their order has been changed. Immediately 
one can see that the barren and trace sulphides (blues) plot to the 
left, whereas the samples with higher actual sulphide contents 
plot to the right. 
 

 
Figure 3: Results of the mineral estimate calculation on drill core samples 
from Leinster. Each vertical bar represents an individual sample and is 
coloured and grouped by its actual sulphide content. The tops and bottoms 
show the results obtained with each of the two objective functions thus 
defining the range of possibilities. As the actual sulphide content 
increases, the minimum abundance (bar bottoms) of pentlandite 
abundance tends to increase, and the maximum abundance (bar tops) of 
silicate and carbonate abundance tends to decrease. 
 

Using these criteria we can test the accuracy of the mineral 
estimate prediction for barren and sulphide-bearing samples 
(Figure 5). A more conservative estimate would focus only on 
those samples that must contain pentlandite (Figure 4, bottom), 
however this will miss many of the pyrrhotite-rich samples that 
surround and are associated with ore. More than 85 % of barren 
samples are correctly predicted to be barren, and 81 % of 
sulphide-bearing samples are correctly predicted to contain 
sulphides. The success rate increases as the actual sulphide 
content increases. Using > 0.001 volume fraction pentlandite 
would reduce the number of false positives but increase the 
number of sulphide-bearing samples that are misidentified as 
barren.  

 

466            Advances in Geophysical Inversion and Modeling
_________________________________________________________________________________________



 
Figure 4: An alternate representation of the results from Figure 3. Here 
only the minimum abundances (bar bottoms) are shown (circles) 
coloured by actual sulphide content. The bars are sorted in order of 
increasing minimum predicted abundance of pyrrhotite and pentlandite 
(top) or pentlandite alone (bottom). Where the respective predicted 
abundances exceed 0.001 volume fraction (depicted by dashed lines), 
the samples can be flagged as anomalous and worthy of follow-up. 
Either criteria can be used; for Figure 5 we use the pyrrhotite + 
pentlandite criteria to identify sulphide-bearing samples. 

 
 

 
Figure 5: Graph showing the accuracy of the mineral predictions when 
using a cut-off of 0.001 volume fraction pyrrhotite and pentlandite (top 
of Figure 4). Each bar represents the listed group of samples based on 
visual estimates of sulphide content. Blue segments indicate the 
proportion of successful predictions for that group. Brown segments 
show where the predictions were incorrect, i.e., sulphide-bearing 
samples that were predicted to be barren (false negative) or barren 
samples predicted to contain sulphides (false positive). 

 

Summary 
 
The high success rate for identifying sulphide-bearing samples 
based only on knowledge of densities and susceptibilities is 
very encouraging. Using a cut-off criterion based on the 
minimum abundance of ore sulphides results in minimal false 
positives, where barren rocks are incorrectly identified as 
sulphide-bearing, yet has a high success rate at identifying 
actual sulphide-bearing rocks.  
 

APPLICATION TO 3D INVERSION MODELS 
 
In practice the mineral estimates are better suited to situations 
where visual inspection of the rocks is impossible. One such 
situation might be where wireline downhole logs of density (or 
gamma-gamma density) and susceptibility have been recorded 
but core has been lost, has deteriorated, or is inaccessible. A more 
general application of the mineral estimates applies to densities 
and susceptibilities derived for the subsurface using geophysical 
modelling and inversion techniques. 

Gravity and magnetic inversions are becoming standard 
practice in many mineral exploration programs and are one of the 
few ways in which 3D information can be inferred from buried 
rocks. Interpreting the 3D density and magnetic susceptibility 
models derived using inversions is challenging due to the number 
of factors that can influence the physical properties of a particular 
rock or rock type. Measurements of physical properties on 
samples can supply some information on the physical properties 
expected for particular rocks and alteration or mineralisation 
styles. However, in ancient or complex hydrothermal and 
metamorphic terrains such measurements may not be 
representative of all possible geological processes in the region, 
and the rocks may be deeply buried preventing direct access and 
measurement anyway. In such scenarios, an estimate of 
mineralogy derived from inferred physical properties, a general 
understanding of the processes the rocks may have been exposed 
to, and knowledge of ore deposit models may provide a useful 
targeting tool for focusing future exploration efforts. 

 

Olympic Dam 
 
Here we present an example of how the mineral estimation can be 
applied to the results of regional-scale gravity and magnetic 
inversions over the Olympic Cu-Au province north of Adelaide 
along the eastern margin of the Gawler Craton in South Australia. 
Despite negligible Proterozoic outcrop, and thick Proterozoic to 
Cambrian basinal cover sequences, it is highly prospective for 
Proterozoic Cu-Au mineralisation. It hosts the giant Olympic 
Dam iron oxide Cu-Au-U-Ag-REE (IOCG) deposit which 
contains total resources of 4430 Mt at 1.1 % Cu, 0.4 kg/t U3O8, 
0.5 g/t Au, and 2.2 g/t Ag (BHP Billiton Ltd., 2006), as well as 
two significant new IOCG discoveries in the last decade at 
Prominent Hill (Belperio and Freeman, 2004) and Carrapateena 
(Fairclough, 2005), northwest and south, respectively, of this 
study’s area of interest. Olympic Dam consists of a large (> 3 km 
diameter) accumulation of hematite-chalcopyrite-bornite-
magnetite mineralisation hosted by a 7 km × 5 km areal extent 
breccia complex within a granitic batholith, below a minimum of 
260 m of younger transported cover rocks (Reeve et al., 1990; 
Skirrow et al., 2002). The batholith is one of several large 
Paleoproterozoic to Mesoproterozoic granitoid suites in the 
Olympic province, which also includes a core of Archean 
granulite facies rocks underlying various metamorphosed 
volcanic and sedimentary sequences intruded by or associated 
with the granitoid suites (Daly et al., 1998). 

Gravity and magnetic inversions were prepared by Williams 
et al. (2004) using the UBC–GIF inversions software GRAV3D 
and MAG3D (Li and Oldenburg, 1996, 1998) and publicly 
available regional gravity and magnetic data (Geophysical 
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Archive Data Delivery System: http://www.geoscience.gov.au/ 
gadds/). These inversions covered a region of 150 km × 150 
km to a depth of 10 km centered on the Olympic Dam deposit, 
and used 1 km × 1 km and 0.5 km tall cells (0.5 km3) 
throughout. As described by Williams et al. (2004), a basic 
reference model of expected geology, based on the basement 
geology interpretation by Direen and Lyons (2002) was used to 
constrain the inversions and physical properties were defined 
for each of the 10 rock units in the model based on physical 
property measurements on drill core samples (N. Direen, 
unpub. data, 2002).  

The goal of our present study is to assess whether 
mineralogical maps can be derived from density and magnetic 
susceptibility models recovered by the inversions and whether 
such maps might add value to the recovered inversion results. 
Our study was not seeking to identify candidate exploration 
targets and no ground validation of the results has been 
conducted except by correlation with the locations of known 
copper deposits and prospects. The work presented here should 
be considered a proof of concept rather than a formal 
exploration outcome for the Olympic Cu-Au province. 

 

Estimating mineral abundances from inversion models 

Component properties 
Mineralogy estimates can be obtained from density and 
magnetic inversion models using a similar approach to that 
described above for drill core samples. For IOCG systems the 
dominant minerals controlling the physical properties of the 
rocks will be magnetite, hematite, chalcopyrite, pyrite, and the 
low density alteration phase sericite, plus the barren host rock 
component that contains all other silicate and carbonate 
minerals. The properties of these minerals are outlined in Table 
3. Although generally a mixture of white micas with densities 
of 2.7-3.0 g/cm3 (Chesterman and Lowe, 1979), intensely 
sericitised rocks are likely to have lower densities due to 
increased porosity as a result of mass loss to the acidic fluids 
responsible for the sericitisation. Table 3 therefore shows our 
estimated properties for intensely sericitised rocks in this 
region.  

For an unaltered or minimally altered rock the primary 
control on the rock’s physical properties is its lithology. In a 
geologically-constrained potential field inversion the user will 
have supplied a 3D model of expected physical properties for 
each cell to guide the inversion towards a solution that is 
consistent with the geology. This 3D reference model will be 
based on any existing knowledge of the geology of the area, 
including mapping, drilling, structural interpretation and 
conceptual models. The inversion will recover a physical 
property model that is as close as possible to the reference 
model while still reproducing the observed geophysical data. 
Due to the size of the model, the size of the cells, and the lack 
of detailed knowledge of the true geology within the model, the 
reference model will only represent coarse-scale geological 
features, > 10-20 km across at the scale of this study, and is 
unlikely to represent more localised hydrothermal alteration 
and mineralisation. The densities defined in the reference 
model,

hostρ , can therefore be used as an estimate of the barren 
host rock properties for each inversion cell. The range of 

susceptibilities is defined by the range of susceptibilities expected 
for rocks containing only silicate and carbonate minerals.  

Uncertainties 
When applied to drill core samples (above), uncertainties 
associated with the physical properties of minerals, barren host 
rock component, or samples could readily be defined in terms of 
measurement ranges or standard deviations. The inversion cells 
are orders of magnitude larger than the individual core samples 
that actual property measurements were made on so it is 
necessary to adjust the uncertainties to allow for the volume 
scaling of variance. A geostatistical analysis of a large physical 
property database would provide an understanding of the 
magnitude of the reduction in variance for a particular suite of 
rocks, but such data is rarely available at the scale (up to 10s or 
100s of kilometres) of inversion models. 
 
The range of allowable host rock end-member densities, 

hostρ ± ∆ 
ρhost, will be reduced by bulk averaging of the rock and will 
converge towards the mean rock density, 

hostρ  , with increasing 
cell volumes. The value of ∆ ρhost, can therefore be reduced for 
large cell volumes.  

The uncertainty in the accuracy of the physical properties 
recovered by the inversion is more problematic. The reduction in 
variance associated with increasing rock volumes would be 
partially compensated for by an increase in the uncertainty 
associated with the physical properties recovered by inversion 
compared to direct measurement.  

Objective functions 
Two objective functions are defined to extract a possible range of 
mineral abundances with one extreme represented by the 
maximum possible abundance of the copper ore chalcopyrite  
 

1F ( ) mgt hem cpy py ser hostx x x x x x= = + − + + +Tx c x
,    (21) 

 
and the other represented by the maximum abundance of the 
barren host rock component 
 

2F ( ) mgt hem cpy py ser hostx x x x x x= = + + + + −Tx c x
.    (22) 

Additional constraints 
Since no information is available regarding the absolute 
maximum and minimum abundances of each of the six 
components within 0.5 km3 cells, default lower and upper bounds 
of 0 and 1, respectively, are used for each component. One 
additional constraint is included based on the premise that 
alteration is more common than mineralisation. In particular it is 
expected that the amount of chalcopyrite will always be less than 
the amount of hematite in any sample (Reeve et al., 1990), so we 
apply a constraint of the form 
 

  cpy hemx x≤
.                     (23) 
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Table 3: Summary of the physical properties of common minerals associated with iron oxide copper gold (IOCG) deposits. Where 
conflicting ranges are reported in the literature, a representative range is used. 

Mineral Minimum 
density 
(g/cm3) 

Maximum 
density 
(g/cm3) 

Minimum 
susceptibility 
(SI) 

Maximum 
susceptibility 
(SI) 

References 

Sericite 2.10 2.30 1 × 10-5 1 × 10-3 Estimated (see text below) 
Pyrite 5.00 5.04 3.50 × 10-5 5.27 × 10-4 Carmichael (1982), Hunt et al. 

(1995) 
Chalcopyrite 4.18 4.22 2.30 × 10-5 4.02 × 10-4 Hunt et al., (1995) 
Hematite 5.24 5.30 1.00 × 10-4 4.02 × 10-2 Carmichael (1982), Hunt et al. 

(1995) 
Magnetite 5.10 5.20 3 8 Telford et al. (1990), Clark 

(1997) 
 

Results 
 
In general the method is unable to clearly differentiate between 
chalcopyrite-, pyrite-, and hematite-bearing rocks at the scale 
of 0.5 km3 inversion model cells. This might be expected based 
on the IOCG ore deposit model and the constraint imposed by 
equation 23, but is also an artefact of the scale of observation 
and minimising the objective functions. The calculation is 
more likely to include hematite to explain a dense cell as the 
volume of the higher density hematite required to explain the 
high density cell is lower than the volume of the lower density 
chalcopyrite and pyrite required. Since IOCG ore bodies 
commonly contain all three minerals we usually display images 
of hematite + sulphide abundance which will effectively 
identify the more volumetrically extensive hematite alteration 
zones that might contain and enclose IOCG mineralisation. 
Despite the lack of resolution of the individual minerals in this 
example, the result is more accurate than including a combined 
hematite-pyrite-chalcopyrite end-member that would have 
extremely broad uncertainty in its expected physical properties 
of 4.18-5.3 g/cm3 and 2.30 × 10-5 to 4.02 × 10-2 SI (from Table 
3). 

The maps in Figure 6 show calculated abundances of 
magnetite, sericite, and hematite + sulphide at the inferred 
basement surface derived from drill hole intersections. 
Following the method used for drill core samples above where 
the minimum calculated abundances were used to provide an 
effective conservative estimate of sulphide content, we will 
focus on the minimum calculated hematite + sulphide 
abundances for the Olympic province inversions obtained 
when the abundance of barren host rock is maximised. This 
identifies areas where the supplied reference model of 
properties and therefore the available geological understanding, 
and the supplied constraints are insufficient to explain the 
gravity and magnetic anomalies, and so some hematite and 
sulphides are required. 

In Figure 6, the largest and richest hematite and sulphide 
calculated anomaly exactly coincides with the Olympic Dam 
deposit, but the calculation also identified potential hematite 
and sulphide accumulations near several other copper 
prospects. Some prospects do not show evidence of hematite 
and sulphide accumulations in this calculation, but are 
associated with anomalous magnetite accumulations; these may 
represent low-grade copper targets, or prospects where copper 
zones lie below the inferred basement surface. There are also 

some areas that show potential for hematite and sulphides where 
no known copper has been identified during previous exploration; 
these may represent hematite-rich rocks with no copper sulphides, 
areas where the geological understanding is incorrect, or genuine 
prospective targets. 

By converting the physical properties recovered by the 
inversion into a mineralogical model the results can be interpreted 
and prospective areas ranked with respect to the IOCG mineral 
system model. High quality targets will have larger, richer 
predicted accumulations of hematite and sulphides within or 
adjacent to magnetite accumulations (Bastrakov et al., 2002), 
possibly with local sericite alteration. Lower quality targets might 
have small or less abundant hematite and sulphide zones or 
greater separation from adjacent magnetite accumulations. 

 

CONCLUSIONS 
 
Reliable estimates of mineral abundances can be extracted from 
physical property measurements by including an understanding of 
the minerals most likely to control the physical properties of the 
rocks, a small number of geological constraints, and allowing for 
measurement uncertainty. Maps of the extracted minimum 
abundances provide realistic first-pass estimates of the 
distribution of minerals at depth and under cover when applied to 
geologically-constrained gravity and magnetic inversion results. 
These results can help identify target areas for further data 
acquisition or sampling when interpreted with an understanding 
of likely ore deposit models. The accuracy of the maps depends 
on 
• the quality and resolution of the gravity and magnetic data, 
• the accuracy of the geologic reference model used to 

constrain the inversions, 
• the resolution of the inversions, 
• how representative the selected suite of minerals or 

components is, 
• the accuracy of lower and upper bounds on mineral 

abundances, 
• the accuracy of the mineralogical constraints used, and 
• the level of uncertainty allowed in the calculation. 

If improvements can be made at any of these stages, such as 
developing an improved geological understanding after drilling a 
hole, then those improvements should be included in an updated 
iteration of the mineral estimation process. 

As these estimates are based on only two data they are 
underdetermined, and the extracted range of possible mineral 
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abundances may be large. The best solution to this problem is 
to include additional data. An unlimited number of geophysical 
or geological datasets can be included in the calculation by 
adding equations similar to equations 9 and 10. These will 
make the calculation less underdetermined and enhance the 
resolution of each end-member component. Obvious candidate 
datasets include resistivity or conductivity, chargeability, and 

seismic velocities. Unfortunately many of these datasets may 
have nonlinear relationships to mineral abundances, and depend 
on characteristics other than mineral abundances, such as the 
connectivity of conductive minerals. Such complexities may 
require the use of nonlinear, or quadratic, programming 
techniques.  
 

 
Figure 6: A. Perspective view of a 3D alteration map of the inversion volume. Brown surfaces enclose all cells with > 0.1 vol. % hematite or sulphides; 
green surfaces enclose cells with > 0.1 vol. % sericite; blue surfaces enclose cells with > 0.5 vol. % magnetite. Black lines indicate unit boundaries used in 
reference model; red spheres indicate mines/deposits, small spheres indicate prospects/occurrences, with the main occurrences labelled. B. Calculated 
magnetite abundance on the basement surface with 0.2 % contours of magnetite shown in black, and unit boundaries shown in white. C. Calculated hematite 
+ sulphide abundance on the basement surface with 0.1 % contours of hematite + sulphides shown in black and unit boundaries shown in white. D. 
Calculated magnetite abundance on the basement surface with 0.1 % contours of hematite + sulphides shown in black, 0.1 % contours of hematite + 
sulphides shown in white, and unit boundaries shown in grey. 
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