


Bougrain et al. (2003) and Harris et al. (2003). We believe, 
however, that the neural network approach holds particular 
promise for target identification, especially in its ability to 
provide quantitative probabilistic target rankings. We shall 
therefore concentrate exclusively on that approach in the present 
paper. 

 

NEURAL NETWORK MODELLING 

 
The neural network approach to target identification in mature 
districts can be seen as similar to a search for “look-alikes”. It is 
not an attempt to target completely new types of deposit, only 
those which are sufficiently similar to known ones. However, 
this immediately invites the query “similar in what respects?” In 
practice there is an almost limitless variety of ways in which 
prospective locations can be compared. Decisions about 
similarity or difference will depend on which “features” are 
selected and how they are represented in the quantitative model.  
Furthermore two locations may be similar is some respects but 
differ in others, so that there can be any number of degrees of 
similarity or dissimilarity between two locations. How can such 
degrees be measured and how can they be translated into 
numerical probabilities? We identify these two issues, 
respectively, as those of the problem of feature selection and 
data representation, and the problem of robust and reliable 
probability modeling. 
 

Feature selection and data representation 

 
A wide range of geoscientific data sets is likely to be available 
in a mature district.  This is increasingly true as government 
agencies seek to encourage exploration and mining. Many such 
data sets are now in the public domain. These may include 
gravity, magnetics, radiometrics, soil samples, stream sediments, 
lithology, structure, satellite imagery etc. and any of these data 
sets might be relevant to the targeting process. Some may be 
more relevant than others, depending on the minerals being 
targeted and the factors controlling the mineralizing system. 
There may be differing prior opinions about the likely ranking of 
data sets in terms of relevance, but it is better for that ranking to 
be a product of statistical analysis, rather than a presupposition. 
An even-handed approach should include all potentially relevant 
data sets and allow a statistical model to decide how much 
account to take of each. 

Nonetheless, this is not a full solution to the problem of 
feature selection. The aim of targeting is to differentiate specific 
locations. How do two locations, ideally to be distinguished to 
the resolution needed for sitting a drill collar, differ with regard 
to their gravitational properties for instance? It is not sufficient 
to use just one numerical gravity value to distinguish locations. 
There is little meaning in a single-point geophysical reading, or 
even a topographical one. There is no reason why mineralization 
should occur at a single elevation, such as 3,000 meters. The 
same applies to a tranche of gravity readings. Clearly it is the 
pattern of data in the neighborhood of a given station that is 
important. It may be that flanks of gravity highs have particular 
significance, but it would be wrong to build this into the model 

as an assumption. It should only be necessary to provide the raw 
materials needed for the model to construct such features for 
itself, if the model determines that such features correlate with 
known deposits. 

In the case of geophysical data sets, such as gravity or 
magnetics, a useful way of supplying this raw material is 
through a collection of derivatives of the primary data. This 
corresponds to representing a function by its Taylor series 
expansion in the neighborhood of a given point. For the 
approximation to be valid to a reasonable distance, it is 
necessary to include both first and second order terms, including 
cross derivatives. Together with primary data, this provides 10 
numerical coefficients, including vertical derivatives, for 
characterizing a given grid location. Furthermore it is possible to 
view data at different scales, using upward continuation. The 
derivative process can then be repeated at a different elevation to 
provide a further 10 coefficients, making 20 in all if just two 
elevations are used. In all, these can provide a rich 
characterization of the local features of a given geophysical data 
set. 

The same considerations apply to geochemical and remote 
sensing data. A single-point observation may not capture the full 
significance of the data; gradients and textures may also be 
important. In both cases the model needs information about 
neighboring values. These can again be provided through 
derivatives, though fewer may be needed if a shorter range is 
adequate. 

Geology also needs special treatment. The geological map 
may record dozens of different formations, and each needs to be 
represented as a possible input to the model. But neighboring 
formations and contacts may also be important aspects of the 
geology so that, again, it is necessary to find a representation of 
how each location relates to its immediate neighborhood. 
Similar issues arise with respect to geological structure. There is 
a need to represent how any individual location relates, in terms 
of distance for example, to neighboring structures, both major 
and minor, and ideally to their strikes. 

Equipped with suitable ways of representing the various 
individual data sets, a vector x = (x1,...,xM) can be associated 
with each geographical location, where each component of x is 
one of the quantities mentioned above. The number M  o f  
components may be large, of the order of several hundreds. The 
feature vector x then represents the raw exploration data, at a 
given location, in as complete and neutral a way as possible. 

 

Probability modeling 

 
The aim of the neural network approach is to determine a 
numerical probability for the occurrence of a mineral deposit at 
each grid point in the region of interest. This quantity can be 
written as P(D|x).  It is the conditional probability that a location 
with exploration features x hosts a deposit. 

In order to achieve a reasonable degree of reliability in the 
modeling process, it is assumed in this paper that the region of 
interest is a mature district where there are sufficiently many 
known deposits. These deposits provide positive instances of 
mineralization, each with its own associated feature vector 
x1,...,xN. We also need negative instances whose feature vectors 
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x'1,...,x'N are associated with an absence of mineralization. 
Ideally the latter will correspond to locations of existing 
exploration drill holes which have failed to intersect 
mineralization. Alternatively, we have it found equally 
satisfactory to pick N locations at random in the region of 
interest, and to label them conventionally as negative instances. 
[If there were a significant chance that a location picked at 
random would host a mineral deposit, the methods proposed in 
this paper would be largely unnecessary.] 

The method used to fit the model is penalized maximum 
likelihood, where the parameters to be fitted are the connection 
strengths in a multi-layered feed-forward neural network. 
Details of the method can be found in Barnett and Williams 
(2006) and in papers referred to there. It is important to stress 
that the model used here is not a simple binary classifier. If it 
were, the final target map would consist of just two inferred 
types of region, prospective and barren, with no distinctions 
being made within prospective regions. By contrast the neural 
network model provides numerical probability estimates for 
each location, so that targets can be ranked in terms of 
favorability.  

Fitting probability models of this type has to be undertaken 
with caution in view of the relatively small number of samples 
available. Even in a mature district, the number of known 
deposits of any significant size is likely to be measured in 
dozens rather than hundreds.  It may be justifiable to extract 
multiple positive instances from large deposits, if outlines are 
known, but the total number of positive instances available is 
still unlikely to exceed several hundred. The number of 
parameters in the model, on the other hand, may be measured in 
thousands. The reason is that the exploration feature vector may 
need to contain hundreds of components, if full justice is to be 
done to the information contained in multiple data sets, since 
there is no knowing in advance which components are relevant, 
either individually or in combination. But even a linear model 
needs as many parameters as there are feature vector 
components. A non-linear model, which is certainly needed to 
model the complex non-linear relationships between feature 
vectors and target probabilities, will necessarily exceed that 
number by a sizeable factor. There is therefore cause for serious 
concern about over-fitting the data, which can be explained as 
follows. 

Intelligence tests sometimes list a sequence of three or four 
integers and invite the subject to supply the next term, despite 
the fact that there are infinitely many legitimate answers. Since a 
rule exists to fit any finite sequence, including one obtained by 
adding a random integer to the original sequence, intelligence is 
presumably attributed to subjects whose responses intuitively 
conform to a “simple” rule. A similar, but more common, 
scientific problem is that of curve fitting. Even restricted to 
polynomials, if no bound is placed on the order of the 
polynomial, there are infinitely many curves fitting the data, but 
which differ arbitrarily when used for interpolation or 
extrapolation outside the sample. The problem faced by the 
statistical analyst is to match the complexity of the model to the 
information content of the data. The solution we adopt to this 
important problem is referenced in the Appendix to Barnett and 
Williams (2006). It involves the choice of a suitable penalty 
function in conjunction with maximum likelihood fitting. 

A significant consequence of penalizing model complexity 
is that some known deposits may be fitted less well than others. 
A known deposit that is not well fitted by the model emerges as 
being untypical in terms of its exploration characteristics; 
exploration of locations with similar characteristics elsewhere 
should have relatively low priority. Conversely, some locations 
presented to the model as negative training instances may score 
relatively highly. These would be particularly interesting places 
to explore. 

Target ranking 

The neural network model provides conditional probabilities of 
deposits at each location. These are known as posterior 
probabilities. Numerically, however, they depend on the prior 
probability which, effectively, is an estimate of the total extent 
of mineralization over the region of interest, wherever it might 
be found. In practice, it is more reliable statistically, and it is 
sufficient for the purposes of exploration, to calculate a relative 
quantity, namely the ratio of the posterior odds to the prior odds.  
The logarithm of this quantity, which depends on the exploration 
characteristics at a given location, is known as the weight of 
evidence. [See Good (1950). This quantity is also used by the 
“weights-of-evidence” approach to targeting, as described for 
example in Bonham-Carter (1994), but the method of calculation 
and the assumptions underlying the calculations are quite 
different. The assumptions of the weights-of-evidence approach 
are that exploration data are conditionally independent, and that 
components of the feature vector x can only assume a few 
discrete values. By contrast, the present approach places no 
restrictions on the range of possible values of components of the 
feature vector, and deliberately seeks to exploit, rather than 
discard, the multivariate information in exploration data.] This 
can be imaged throughout the region, with contours of the 
weights of evidence being the same as contours of the 
corresponding conditional probabilities. High spots of this image 
are the neural network targets. The choice of a suitable contour 
then controls the desired extent and the resulting shape of a 
target area. 

It is important to emphasize that any target ranking depends 
on the body of evidence employed in making the ranking. If the 
modeling process is repeated after further exploration data 
becomes available, exact locations and rankings of the targets 
may change.  In practice, however, the process tends to 
converge, unless new data wholly uncorrelated with existing 
data are introduced. Nonetheless, even in a state of data 
saturation, the neural network ranking is only based on 
information that can be represented in the form of gridded data. 
Evidence that is not representable in this form, such as 
geological opinion or theory regarding the regional mineralizing 
system, needs to be taken into account alongside the empirical 
ranking provided by the neural network. Furthermore, the neural 
network can only hope to locate targets to a certain degree of 
accuracy. Site visits will still be required before any final 
decision is made whether to drill and, if so, where exactly to 
locate the holes. 

Data relevance 

The fact that target rankings depend on data input can be 
exploited to probe the rankings. There is no obstacle to training 
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a network on a subset of the total data, where the subset 
comprises either an individual data set, or a partial combination. 
In this way it can seen which are the gravity targets, which are 
the geochemical targets, which are the structural targets, etc. The 
most reliable targeting will be based on the total evidence, which 
takes account of the full complex inter-relations between the 
data sets. But insight can be obtained through examining how 
targets, based on the combined data, match up with targets based 
on individual data sets. 

Networks trained on individual data sets also permit the 
measurement of data relevance. The particular style of 
mineralization found in a given region is likely to determine 
which data sets are the most predictive. These differences can be 
investigated visually by comparing images of targets based on 
individual data sets and those based on combinations of data.  It 
is possible to go beyond this, however, by using statistical 
information theory to provide a precise numerical measure of the 
information which an individual data set contributes, relative to 
the information contained in the full combination. This permits a 
ranking of the various data sets for their relevance over the area 
of interest. 

 

CASE STUDIES 

 
To illustrate the data mining approach described in the preceding 
sections of this paper, three case studies will be presented: one 
from the Western USA; one from Eastern Australia; and one 
from Eastern Canada. 
 

Walker Lane 

 
The Walker Lane shear zone, which straddles the border 
between Nevada and California in the western United States (see 
Fig. 1), has a long history of exploration and mining dating back 
to the discovery of the famous Comstock Lode in the late 1850s. 
Though perhaps not as well known and certainly not as 
productive as the neighbouring Carlin District, the Walker Lane 

is notable for its numerous occurrences of volcanic-hosted 
epithermal gold and silver deposits. 
 

 
Figure 1: Map showing the location of the Walker Lane study area in 
the Western USA. 
 
Aside from the Comstock Lode, which in its day produced 
nearly 200 million ounces of silver as well as 9 million ounces 
of gold, and Round Mountain, which has an estimated gold 
content of 14 million ounces, there are at least ten other deposits 
with established contents of over one million ounces of gold. If 
all the smaller (that is less than one million ounce) deposits are 
taken into account, then to date approximately 50 million ounces 
of gold have been discovered in the area. 
 

The majority of these gold deposits occur in the Walker 
Lane shear zone, which is a 100-km wide, NW-trending 
structural corridor extending southeast from Reno towards Las 
Vegas (see Fig. 2). This strike-slip system contains a series of 
deep-seated, right-lateral shears and associated normal faults, 
which presumably provided the channel ways for magmatic and 
hydrothermal fluids. 

 

 
Figure 2: Left: Regional geologic map of the Walker Lane, in which the late-Caenozoic cover rocks have been left uncoloured. Right: Locations of 
known gold deposits. The area marked in gray contains the Nevada Test Site, and other military reserves that are off-limits to mineral exploration. 
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The Walker Lane is bounded to the southwest by the uplifted 
Sierra Nevada Mountains and to the northeast by the Basin and 
Range extensional terrain. The rock outcrop in this area is 
mostly Tertiary volcanics with an assortment of Mesozoic 
intrusions of mostly monzonitic or granodioritic composition. 
The basement is made up of strongly folded and thrusted 
Palaeozoic sedimentary rocks. These rocks are exposed in the 
southeast of the area around Las Vegas, where they contain a 
high proportion of carbonates. 

Exploration data sets 

The area covered by the Walker Lane study was about 140,000 
square kilometres, as shown in Figure 1. Our data mining study 
was commissioned by Newmont Mining Corporation as part of a 
regional survey for gold in this area. The available exploration 
data sets used in this study were 
 

Regional geology 
Regional structure 
Digital elevation model 
Landsat thematic mapper 
Airborne magnetics 
Airborne radiometrics 
Isostatic residual gravity 
Stream sediment geochemistry 
Known deposit footprints 

 
The majority of these data sets are in the public domain and 
were obtained from sources like the Nevada Bureau of Mines 
and the National Geophysical Data Center. One exception was 
the regional structure, which was based on a proprietary in-
house compilation (belonging to Newmont). This was not 
simply a tracing of linear features, but was a geodynamic 
interpretation which took into consideration regional tectonics 
such as the thrusting of the Basin and Range, the buttressing 
effect of the Sierra Nevada batholith, and the strike-slip 
movements of the San Andreas fault system (B. Davies, personal 
communication, 2003). 

The regional geological base map (see Fig. 2) was created 
from a splice of the geology map of Nevada, drawn at a scale of 
1:500,000, and the geology map of California, drawn at a scale 
of 1:750,000. Details of these maps, which are available in 
digital form from the respective state surveys, can be found in 
Stewart and Carlson (1978) and Jennings (1985). Since the 
Nevada map covered the larger area, both maps were unified to 
the legend of the Stewart and Carlson map. 

The known deposits layer is the most critical layer, since it is 
used for training the network against all the other data sets. In 
producing this layer, all known gold deposits exceeding 50,000 
ounces were carefully plotted from air photographs, detailed 
publications, or field visits with a global positioning system 
(GPS). About 150 separate deposits were located in this manner.  
Figure 2 shows the locations of some of the larger deposits in 
the Walker Lane, marked with traditional crossed hammers. In 

the data mining study, actual footprints were used wherever 
possible. 

All these data sets have their own strengths and weaknesses. 
The geologists may feel that the state-wide geology is too broad 
brush and contains mapping errors; the geophysicists may be 
concerned about missing data due to the variable station interval 
of the gravity surveys; the geochemists may worry about the 
different sample and analytic procedures used to collect the 
stream sediment data. These are valid concerns. Certainly, the 
better the quality of the input data the better the results that will 
be achieved by an analytic process. Nonetheless, these are 
typical regional exploration data sets that we have learned to 
deal with in our normal manual interpretations. Furthermore, 
statistical correlations between multiple data sets provide some 
redundancy in overall information content, so that local 
deficiencies of an individual data set are compensated by the 
combined force of the others. 

Data mining results 

Since the Walker Lane is a competitive exploration area, the 
final, overall target map was deemed too sensitive to be shown 
in this publication. However, part of the survey area can be 
shown that falls inside the Nevada Test Site. Not surprisingly, 
after four decades of nuclear weapons testing, this part of the 
Walker Lane is permanently off-limits to gold mining. 

Figure 3 shows the results that were obtained from an area 
which is about 50 km southeast of the historic mining district of 
Goldfield and covers about 2500 km2 in the northwest corner of 
the Test Site. The target favorability map is based on all the 
exploration data sets described above except the geochemistry, 
which was not collected in the Test Site. The Landsat data and 
the geology are shown at the same scale for direct comparison to 
the target map in the center. 

The data mining exercise produced two interesting targets, 
which would both certainly be followed up if access were 
permitted to this area. Target A can be seen to be coincident 
with a color anomaly in the TM data, indicating the presence of 
alteration associated with mineralization. Target B coincides 
with a circular feature that is visible in both the TM and the 
geology. Further interest is added by the small, orange-colored 
formation that crops out at the center of this probable caldera. 
This is a Tertiary andesite that is well known to Nevada 
geologists for hosting many of the larger volcanic-hosted gold 
deposits in the Great Basin. Remember, however, that these 
targets are based on all the available exploration data, for 
example the gravity, magnetics and structure, and not just the 
TM and geology. 

These two favorability targets, which are typical of other 
targets produced by the data mining study elsewhere in the 
Walker Lane, are sufficiently small to be checked out in a matter 
of days by a preliminary field inspection and grab rock sampling 
to determine if further exploration is warranted. At this stage, 
detailed geological mapping, geophysical surveying and 
geochemical sampling would normally be carried out to refine 
the targets for drill testing. 
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The gold endowment of the study area is close to 50 million 
ounces (see Fig. 5). The best known deposits occur at Cadia-
Ridgeway (over 30 million ounces), Lake Cowal (5 million 
ounces), and Northparkes (1.5 million ounces). However, within 
the greater Lachlan Fold Belt, which runs into Victoria and 
includes the huge deposits of Bendigo and Ballarat, the total 
endowment is over 150 million ounces. 

Exploration data sets 

The exploration data sets used in the LFB study were 
Regional geology 
Regional structure 
SRTM elevation data 
Landsat thematic mapper 
Airborne magnetics 
Airborne radiometrics 
Isostatic residual gravity 
Stream sediment geochemistry 
Known deposit footprints 

The raw material for all these data sets are in the public 
domain, available partly from the New South Wales Department 
of Primary Industries, and partly from Geoscience Australia, an 
agency of the Australian federal government, so no proprietary 
data sets were used. The data mining study was carried out on 
our own initiative, but has subsequently been licensed to Rimfire 
Minerals Corporation. 

The geological map that was used for this study came from 
Geoscience Australia and was just released a year ago. Details 

can be found in Liu et al. (2005). This is a seamless 1:1,000,000 
scale digital map based largely on the 2003 version of the NSW 
state geology data set, which in turn was compiled from the 
historic 1:250,000 and 1:100,000 scale map sheets. 

To establish the correlation of the various exploration data 
sets with gold mineralization in the LFB, the footprints of as 
many known gold deposits as possible were established. The 
primary information for this purpose came from the nationwide 
OZMIN database compiled and maintained by Geoscience 
Australia, and described by Ewers et al. (2002). This data set is 
based on literature search of old records, reviewed by geologists 
with specific knowledge of each deposit. Besides the deposit 
name and location, geological information such as grade, 
tonnage, strike and strike-length are often included. An estimate 
of the positional accuracy is also provided, which can range 
from very precise (e.g., under 50 m) to very approximate (over 1 
km). 

Figure 5 shows the distribution of known deposits in the 
LFB study area. Only the larger deposits were used to train the 
neural networks. To improve on the location information, we 
researched many of these deposits ourselves, by reviewing 
publications and company reports available online, and also by 
placing calls to companies controlling the deposits in the LFB. 
We succeeded in obtaining accurate footprints, or digitized 
outlines, for about 30 of the principal deposits in this manner. 
For another 60 or so smaller deposits, we simply used an oval 
outline based on the strike information in the OZMIN database. 

 

 
Figure 6: Left: Close-up of two targets in the Lachlan Fold Belt. The white squares mark a known deposit, which was one of several clusters of neural 
network training sites. Right: Satellite image of the area covered on the left.  Unfortunately, target B lies under the historic gold mining town of Forbes. 
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Data mining results 

The data mining process worked well in the LFB, where 
there is a first-class collection of modern data sets and a fine 
selection of known deposits that can be used for training neural 
networks. A strong, coherent statistical signal was consequently 
obtained from the exploration data as a whole. Of the eight 
exploration data sets that were incorporated in the study, 
structure, geology (i.e., lithology), and gravity were found to 
have the highest relevance.  However, the other five data sets, 
geochemistry, radiometrics, magnetics, Landsat, and terrain all 
also made significant contributions. 

Like the Walker Lane, the Lachlan Fold Belt is an active 
exploration area, so we can't show the overall target map that 
resulted from the data mining process. However, we can show 
an enlarged portion of the map. Figure 6 shows a pair of typical 
neural network targets. Target A in the north is actually a small 
known deposit, which was used as part of the neural network 
training set. The white squares are on a 100m grid, and represent 
the footprint of the known gold mineralization. The mineshaft 
symbols represent historic workings that produced minor 
amounts of gold. 

The larger Target B in the south is typical of the targets that 
were generated by our data mining study. Note that this target is 
sharply defined and covers an area of roughly 2 square 
kilometres. A target like this would normally be quickly staked 
and followed up on the ground. Unfortunately, as can be seen in 
the satellite image on the right side of Figure 6, this target lies 
directly under the small country town of Forbes. This also 
happens to be where gold was first discovered by Harry 
Stephens, known as “German Harry”, in June 1861. The 
discovery sparked a minor gold rush, which lasted for only a few 
years, reportedly because of difficult mining conditions. 
However, there is undoubtedly gold beneath the town of Forbes, 
which could possibly be extracted by modern mining methods 
were it not for the presence of the town with its population of 
10,000 people. 

 

Porcupine Gold Camp 

 
The Porcupine Gold Camp, which is located in Eastern Canada 
(see Figure 7), is one of the most prolific gold mining districts in 
North America, with past production exceeding 60 million 
ounces of gold. Mining and exploration has been going on in 
this district since gold was first discovered near Timmins in 
1907.  Consequently, today there is a large number of known 
gold deposits and a huge accumulation of exploration data sets, 
ranging from surface and underground geology and 
geochemistry to airborne and satellite geophysics. For these 

reasons, this mature gold district was a natural candidate for a 
systematic data mining study. 

 
Figure 7: Map showing the location of the Porcupine Joint Venture 
study area in Eastern Canada. 
 

The Abitibi greenstone belt, which contains the Porcupine 
Camp, is the largest greenstone belt in the world. The major gold 
camps within this greenstone belt are spatially associated with 
steeply dipping shear zones, such as the Destor-Porcupine Fault, 
a major east-west trending structure that extends for 
approximately 200 km.  The Archaean rocks in the study area 
consist of mafic to felsic metavolcanics, metasediments, and a 
variety of granitoid intrusions. 

The Abitibi greenstone belt is also is unique amongst 
greenstone belts of the Canadian Shield in that it has a high 
proportion of supracrustal rocks, has a generally low 
metamorphic grade, and contains a wide variety of mineral 
deposits, including volcanic-associated, massive sulphides 
(VMS) (e.g. Kidd Creek), komatiite-associated, Ni-Cu-platinum 
group metals (PGM), in addition to the large deposits of lode 
gold. 

Most of the lode gold deposits in the Porcupine Camp are 
hosted by the Tisdale greenschist facies assemblage, which is 
bounded a few kilometres to the south by the Destor-Porcupine 
Fault. Some of the larger historic gold producers in the Camp 
include the Hollinger (19 Moz), Dome (16 Moz), McIntyre (11 
Moz), Pamour (4 Moz) and the high-grade Hoyle Pond mine (2 
Moz). 
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Figure 8: Left: Bedrock geology of the Porcupine study area, in which drift-covered areas to the north have been largely interpreted from the 
geophysics. Right: Footprints of the known gold deposits in this area. 

 
 

Exploration data sets 

As can be seen in Figure 7, the Porcupine study covered a much 
smaller area, roughly 8,000 square kilometres, than the first two 
case studies. Our data mining study of this area was 
commissioned by Placer Dome, who in 2005 were still 
managing what is known as the Porcupine Joint Venture (PJV). 
The PJV, which is currently a joint venture between Goldcorp 
Inc. and Kinross Gold Corporation, has landholdings of some 
37,000 hectares around the major mines and is actively 
exploring for more gold. The exploration data sets that were 
made available to us in the Porcupine study were 

Regional geology 
Regional structure 
SRTM elevation data 
Airborne magnetics 
Airborne Geotem survey 
Ground and airborne gravity 
Known deposit footprints 

The geologic map of the Porcupine area was based on the 
1:100,000 scale geological compilation of the Timmins area, 
released in digital form by the Ontario Geological Survey, and 
described by Ayer and Trowell (1998). Part of this map is shown 
in Figure 8. In this compilation, the rocks have been lumped into 

15 principal lithologies. It is worth noting that this geological 
interpretation was heavily dependent on aeromagnetics and 
gravity, particularly in areas of thick glacial overburden to the 
north. 

The magnetics were flown at a close line spacing and low 
terrain clearance, resulting in a high quality data set. The gravity 
map used for our data mining study was based on a blend of 
older ground gravity data with a recent airborne gravity survey. 
Before splicing these data, the ground gravity data were first 
upward continued to the mean flying height of the airborne 
survey, which was 253m AGL.  Also available to us were the 
Shuttle Radar Topography Mission (SRTM) data, and a time-
domain Geotem survey, which had originally been flown in 
1987, and had been reprocessed more recently and made 
available by the Ontario Geological Survey. 

In addition to these exploration data sets, the footprints of all 
the known gold deposits in the Porcupine camp were carefully 
established by the PJV staff. These footprints, which are shown 
on the right side of Figure 8, were based on historic mining 
records and geological interpretation, and were positioned as 
carefully as possible in plan view. It is important to note that 
these are not just showings, but significant gold occurrences 
with potentially economic grades. 
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Figure 9: Left: Close-up of the geology in part of the Porcupine Camp.  Right: Neural network target map corresponding to the same area.  The green 
crosses mark known deposits, while the red crosses mark targets with a projected 1 in 4 probability of containing a gold deposit. The blue circles mark 
prior drill holes which have been analyzed for lithogeochemistry and gold concentration. 

 

Data mining results 

The Porcupine Gold Camp was found to be well suited to 
this type of objective analysis. Figure 9 shows a close-up of the 
results that were obtained in one part of the camp. The left side 
of this figure shows the geology, and the right side shows the 
corresponding target map resulting from our data mining study. 
On this map, the known deposits are marked in green, and 
targets exceeding a probability threshold of 0.25 (in other words, 
a projected one-in-four chance of containing a gold deposit) are 
marked in red. Similar maps can readily be produced for 
different probability thresholds. 

The blue circles indicate drill holes and other sample sites 
that had previously been analyzed for their lithogeochemistry 
and gold concentrations. These data were not input to the data 
mining process and therefore provide a partial check on our 
results. It can be seen that there are several targets that do not 
appear to have been drill tested. It is also noteworthy that only a 
fraction of the grid nodes around the known deposits have 
received high scores. In other words, the data mining process is 
indicating where not to look as well as where the probability of 
finding gold is high. 

An interesting experiment was conducted by Dr. Cliff 
Saunders, an independent consultant working for Kinross Gold 
Corporation, which has a (49%) minority interest in the 
Porcupine Joint Venture. As a statistical check on our results, he 
selected a number of test sites from the data mining target map, 
at some of which the data mining process predicted gold, and at 

others where the process predicted there should be no gold. 
Then, with the help of the PJV geological staff, he examined the 
drill logs and other geological information from these locations. 

The results of this classical null hypothesis test can be 
briefly summarized as follows (C. Saunders, personal 
communication, 2006): 

· At four sites where the networks predicted gold, and 
there was prior close-spaced drilling information, two 
were found to contain economic gold deposits. The 
other two sites did not contain economic gold; however 
the geologists felt both were good places to look. 

· At five sites where the networks predicted gold, but 
there were no drill data, one site was judged to be 
prospective, and one not to be prospective, on the basis 
of the local stratigraphy. At a third site, sparse drilling 
had encountered a graphitic horizon but no gold. 
Unfortunately, little is known about the other two sites, 
one of which lies beneath a tailings pond and the 
second beneath a smelter plant. It would be ironic if 
these sites later prove to contain gold. 

· At four sites where the network predicted no gold, and 
there had been some previous drilling, one site actually 
contained a small gold deposit, which we had not been 
previously told about. That must therefore be classed as 
a false negative. At all the other three sites, extensive 
drilling had encountered no gold, which confirmed the 
data mining predictions. 

Overall, therefore, the data mining process performed well 
and gave satisfactory results. Apart from the one miss of a small 
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economic deposit, and the couple of sites that were considered 
prospective by the network but were deemed unfavourable by 
the geologists, the process achieved a better than one-in-four 
success rate in Saunders' survey. This is a remarkably high score 
when one considers that, whilst all the right patterns and 
geological conditions may be present, in nature there still may 
be no economic gold found. In the words of a well-known, 17th-
century bard: “All, as they say, that glitters is not gold.” 

CONCLUSIONS 

 
Modern digital data sets embody huge amounts of exploration 
data. Not only are such data sets now commonly available, each 
individually contains far more information than can be 
assimilated by the unaided human interpreter. Furthermore, 
critical indicators of prospectivity almost certainly lie in the 
subtle inter-relations between data sets, as much as in any single 
layer individually. These relations can only be extracted 
systematically by computer-based multivariate statistical 
techniques. 

The neural network model described here is capable of 
analysing the full information content of the data, including its 
multivariate components. The output of the model is a precise 
numerical estimate of the probability of mineral occurrence at 
any given location. Target generation is highly specific, and 
capable of discriminating to within a few hundred meters in an 
area many hundreds of kilometres on a side. Target maps are 
bold and, consequently, easily testable. 

The accompanying case studies illustrate these features. In 
particular, it has been shown that the approach can be applied 
successfully to search for a variety of ore deposit types, in a 
variety of geological environments, and at a variety of map 
scales. The examples we have presented range from Archaean 
lode gold and Ordovician porphyry gold to Tertiary volcanic-
hosted gold deposits, and from regional to mining camp scales. 

At these scales, the third dimension, depth, is barely 
significant, so these were all essentially 2-D studies. However, 
since the neural networks were not told any information about 
location and were simply given the patterns associated with the 
training sites, it would be a straightforward step to extend the 
data mining approach to an underground or 3-D situation. 
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