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ABSTRACT 

Inverse magnetotelluric (MT) problems are nearly always non-unique. Typically, a smoothness criterion is added to the earth model to 

produce a stable solution. However, this process tends to produce unrealistic geological models. In reality, the subsurface geology tends to 

be composed of distinct rock units that are better defined by sharp boundaries rather than diffuse or smooth boundaries. Thus, inversion 

algorithms that can build an earth model with groups relating rock units should be more accurate. We present the application of fuzzy 

clustering as an added constraint within the inversion process to guide model updates toward earth models that may resemble geological 

units. Moreover, fuzzy clustering enables the inclusion of additional prior information from boreholes, such as geochemistry and 

petrophysics, into the inversion process. The integration of this extra information produces geo-electrical distributions that fit measured 

MT data and simultaneously honour the prior information from boreholes better. The synthetic examples demonstrate that by adding an 

extra constraint using fuzzy clustering recovers the true model better than using a smooth constraint. Additionally, fuzzy clustering 

provides a flexible and robust mechanism to include prior petrophysical and spatial information to build seed models that are closer to the 

true model. We have applied this technique to the case study of the Kevitsa deposit within the Kevitsa ultramafic intrusion in northern 

Finland. The geological structure in this area is complex, but the physical properties of the units are reasonably well defined. In this case, 

the spatial distribution of conductivity is not smooth; therefore, inversion of the MT data with smooth constraints only will not produce a 

representative or accurate model. In contrast, our algorithm resolves these issues by using fuzzy clustering techniques that build the model 

comprising units; plus it allows additional borehole data to assist in constructing the units more reliably during the inversion process. A 

key contribution of our work is to fully exploit borehole data by including both petrophysical properties and other geo-spatial information 

to constrain the inversion. Finally, a combination of MT inversion and seismic acoustic impedance is put into the fuzzy clustering technique 

to generate a ‘pseudo-lithology’ image from the final cluster model as an aid to geological interpretation.  

 

INTRODUCTION 

The magnetotelluric (MT) method is a well-known method to 

map the electrical conductivity of the subsurface that is 

particularly known for deep crustal studies. MT for the 

exploration of minerals is becoming more common as it can map 

mineralized zones at considerable depths without heavy 

equipment. However, the inversion of MT data is ill-posed. To 

deal with this issue, smoothness criteria are added to constrain 

the inversion solutions (deGroot‐Hedlin and Constable, 1990). 

Consequently, the smoothest model is chosen, resulting in 

unrealistic geological models as few geological boundaries tend 

to be as vague and diffuse as the smooth models. In geology, the 

subsurface is usually divided into distinct rock units. Typical 

subsurface structures in crystalline rock consist of geological 

units of similar properties. Thus model construction is more 

reliable if grouping criteria are added to constrain the inversion 

process. We propose to exploit the robustness of the fuzzy c-

means (FCM) clustering techniques  (Bezdek et al., 1984) to 

constrain the MT inversion routine (Sun and Li, 2011) so that 

conductivity models with “clustered” conductivity distributions 

are favoured. 

 

The MT method is based upon diffusive fields as it utilizes low-

frequency electromagnetic waves. Therefore, the method loses 

resolution and ‘sharpness’ with depth. Moreover, the intrinsic 

difficulty with MT inversion is that multiple models of 

conductivity can generate an indistinguishable electromagnetic 

signature. In order to reduce the ambiguity and to increase 

model resolution and boundary ‘sharpness’, extra information 

from other sources is needed, which comprise spatial and 

petrophysical information. Li and Oldenburg (2000) reported 

that the structural constraints such as geological information 

could build a better model. The petrophysical constraints using 

borehole data also improve inversion results. The borehole data 

can be utilized in the inversion constraints as a reference model 

(Farquharson et al., 2008) or statistical models (Johnson et al., 

2007; Sun and Li, 2011). It is usually better if both structural 

and petrophysical constraints are exploited (Lelièvre et al., 2009; 

Kieu et al., 2016b). However, the structural constraints can work 

well in a simpler structural environment, such as sediment 

layers. It costs time to extract structural information from a 

complex media such as the crystallized “hard rock” 

environment, and this information usually comes from a 

subjective interpretation process. The borehole data most likely 

represents reliable information. But, this information is usually 

localised and often only partly available in the area of interest. 

For example, the boreholes are only valuable to their depth of 

penetration, and the properties of the inverted model may not be 

acquired. Consequently, the use of borehole data to build 

reference models or to form statistical models may not fully 

exploit this data.  

 

In this study, we propose the use of fuzzy clustering in the 

inversion. Our strategy can automatically extract borehole 

information to put in the inversion, and is applicable even where 

the borehole attribute differs from the model parameter. The 
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fuzzy cluster constraint enhances the accuracy of the entire 

model because even away from the boreholes the models tend to 

use values similar to the “known values”. We utilize lithological 

information, assay and petrophysical data from boreholes to 

assist the MT inversion process in building more “blocky” 

models via clustering analysis. The resultant model must fit the 

MT data and also honor the extra borehole information, which 

need not be restricted to electrical conductivity constraints.   

 

The inverted models of MT are usually compared to the 

interpreted results of other geophysical imaging methods that 

map the geological subsurface. For example, MT models can be 

evaluated by referring to seismic features because the seismic 

method has a higher resolution than the MT method. However, 

the resistivity model may differ from the seismic model; and the 

combination of multiple models usually produces better 

geological images than a single model (Paasche et al., 2006; 

Ogaya et al., 2016). In this work, the final MT model is 

compared with the acoustic impedance model, and then the two 

models are used as input data for FCM clustering. The output 

(result) is a cluster model that can greatly aid the geologic 

interpretation process. 

METHODOLOGY 

Fuzzy c-means Clustering 

The Fuzzy c-means (FCM) clustering algorithm (Bezdek et al., 

1984) is an unsupervised learning method that defines clusters 

of items based on similarities by minimization of the weighted 

error between the elements of the dataset and the centre or 

prototypes values. The objective function of the algorithm is 

described as following:  

𝛷𝐹𝐶𝑀 = ∑ ∑ 𝑢𝑗𝑘
𝑞
‖𝑧𝑗 − 𝑣𝑘‖2

2𝐶
𝑘=1

𝑁
𝑗=1    (1) 

where N and C are the number of data zj  (j=1,…, N) and cluster 

number, respectively. q is the fuzziness parameter, q>1, in this 

study q is set to equal 2, a value widely used (Sun and Li, 2011). 

vk is the centre value of the kth cluster, and ujk is the membership 

degree, with the constraint ∑ 𝑢𝑗𝑘
𝐶
𝑘=1 = 1. The FCM objective 

function corresponds to a weighted sum of errors (or distance) 

when replacing data set, Z (zj, j=1… N), by centre values, V(vk, 

k=1,.., C).  

 

In this study, FCM is utilized to analyze the borehole data (Kieu 

et al., 2015) and to constrain the inversion process (Kieu et al., 

2016a; Kieu et al., 2016b). In our inversion routine, FCM plays 

a two-fold role: first, it is an extra constraint in the inversion to 

partition the model into clusters that may reflect rock units; 

secondly, it is a platform to include other prior information, such 

as borehole elemental analysis data, into the inversion process.  

Inversion Algorithm 

Our inversion algorithm is formulated with the least-squares  

minimization of the following objective function (Sun and Li, 

2011, Kieu et al., 2016b): 

𝛷 = 𝛷𝑑 + 𝛽𝛷𝑚 + 𝛾𝛷𝐹𝐶𝑀,   (2) 

where d measures the difference between observed data and 

synthetic data from the inverted models, m represents the 

smoothness constraint and FCM is the FCM objective function 

(equation 1). This “model guider” term directs the model 

updating process. More specifically, it drives the incorporation 

of rock units within the inverted model. The regularization 

parameters  and  balance between misfit, model structure and 

FCM constraint terms. The prior information is included in the 

inversion routine via FCM (Kieu and Kepic, 2015; Kieu et al., 

2016b).  

 

The prior petrophysical representative values are included in the 

inversion routine via FCM (Kieu et al., 2016a; Kieu et al., 

2016b). During the inversion process, FCM clustering classifies 

N samples of the model Z (zj, j=1,…, N) into C subsets based on 

feature similarities. The clustering process drives the group 

central value V(vk, k=1,…, C) towards the prior representative 

conductivity P(pk, k=1,…, C).  The objective function of FCM is 

modified from equation (1) to equation (3).   

 

Φ𝐹𝐶𝑀 = (1 − 𝜂) ∑ ∑ 𝑢𝑗𝑘
𝑞
‖𝑧𝑗 − 𝑣𝑘‖2

2𝐶
𝑘=1

𝑁
𝑗=1 + 𝜂∑ ‖𝑝𝑘 −

𝐶
𝑘=1

𝑣𝑘‖2
2      (3) 

 

 is the weighting value that represents the confidence level of 

the prior information. In this work, we set this value to 0.5 for 

both synthetic and real examples. 

 

To integrate boundary information within the inversion via 

FCM, the boundary information b is combined with the model 

parameter m to form the data input Z= [m b] of the FCM 

clustering process (Kieu et al., 2016b). 

EXAMPLES 

Synthetic Data 

A synthetic model (Figure 1a), which is the same as one used by 

Lee et al. (2009) and Sasaki (1989), includes a conductive layer 

of 5 Ωm superimposed on the host media of 50 Ωm. The layer is 

interrupted and off-set at a fault between the 9th and 11th km 

along the profile. Near the surface, there are two resistive and 

conductive objects of 100 Ωm and 10 Ωm. MT stations are 

located every 1 km from 0 to 20 km along the profile. The 

frequency band is the same in Lee et al. (2009) which is 0.10, 

0.22, 0.50, 1.00, 2.20, 5.00, 10.00, 22.00 and 50.00 Hz. The 

synthetic data is generated by the MT forward modelling code 

Lee et al. (2009) plus 5% Gaussian random noise. 

 

First, we run the MT inversion with the same set up as in the 

work of  Lee et al. (2009). The 2D inverted model is presented 

in Figure 1b. The result matches the true model. However, the 

boundaries are blurred because of the smoothness constraint. 

The inverted model values are distributed relatively evenly in a 

wide range from smallest to the highest values of the true model 

(Figure 3a). 
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Figure 1: Comparison between our inversion results (c) and (d) 

with the published model (b) (Lee et al., 2009) from synthetic 

data generated by a model (a). The dashed lines mark the 

boundaries of the true model. The triangles on the top of the 

sections mark the position of MT stations. Our result recovers 

distinct boundaries better than the typical smooth inversion 

result. In our inversion, we include additional constraints: 

petrophysical constraints for cluster centres (c) and the 

approximate boundaries of the objects O1 and O2 (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Prior boundaries of the two objects at shallow depth, 

O1 and O2 (Figure 1a) separating the earth model into two 

media (clusters) is used as a constraint in the MT inversion. This 

ensures that models that have similar structures and fit the data 

are most likely to emerge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Histogram of the inverted models using different 

constraints: (a) Smoothness constraint; (b) Smoothness and 

petrophysical constraint; (c) the same constraint as in (b) plus 

the boundaries of the shallow objects. The inversion with extra 

information recovers the model values better than using a 

smoothness constraint only. The red bars show the true model. 
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We have modified the 2D MT inversion code from Lee et al. 

(2009) whilst retaining the original forward solution. An 

inversion is performed with the synthetic data for two cases: 

 

i. The typical petrophysical values of the media 

(i.e., the centre values P = [5; 10; 50; 100] Ωm is 

included 

ii. Boundary information of the two shallow objects 

is available (Figure 2) as a “soft” constraint. 

This procedure is the same as that used by Kieu et al. (2016b).  

The same regularisation parameters  and  are used for both 

cases. The initial model is set to a homogeneous value of 15 

m. These synthetic models test how FCM can improve the MT 

inversion. More importantly, it shows that if we know the 

boundaries of shallow objects, information that is usually 

available for mining projects, it improves the whole model 

considerably. 

 

When petrophysical information is included in the clustering 

definition of the inversion process, the result (Figure 1c) 

matches well with the true model. In comparison with using a 

smoothness constraint, it removes the artefact at the bottom right 

corner of the section. Also, the lower conductive slabs are better 

defined. The distribution of values of the inverted model (Figure 

3b) are more consistent with the true distribution than the values 

from the smooth inversion (Figure 3a). 

 

If boundary information of the two shallow objects O1 and O2 

(Figure 1a) is available (for example from drilling), then we can 

divide the section into the two media (Figure 2) as both, a 

starting model and as a constraint. This information is 

incorporated into the inversion process via a localised cluster 

constraint: pick any cluster as long as it is “this one”. As we are 

concerned about the boundary location rather than the 

conductivity, it means that we can include different data, for 

example, assay or other physical data to select a cluster 

boundary. The inversion result (Figure 1d) nearly recovers the 

true model. Also, the conductivity values (Figure 3c), are closer 

to the true values than just using petrophysical constraints, and 

much better than inversion with a smoothness constraint.  

 

These synthetic examples demonstrate the power of being able 

to direct the inversion algorithm to pick a limited number of 

petrophysical properties to construct a model. Such direction 

also leads to a model that is more representative and 

interpretable for mineral exploration. 

Application to Real Data 

We have selected the Kevitsa data set as a test site because it is 

unusually rich in borehole petrophysics, has both MT and 3D 

seismic reflection surveys to relate boundaries at depth with, and 

much of the information is in the public domain.  The dataset 

was acquired at the Kevitsa Ni-Cu-PGE deposit within the 

Kevitsa ultramafic intrusion in northern Finland (Figure 4a). The 

MT profile includes 48 stations (Figure 1b), the period ranges 

from 0.0001 to 1s. The borehole data shows that this area can be 

divided into conductive and resistive environments (Figure ). 

Conductive zones may relate to ore zones or/and carbonaceous 

phyllite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a) Geological map adapted from Malehmir et al. 

(2012). (b) Location of MT stations, 3D seismic survey area and 

boreholes. The bold red dot marks the location of borehole 

KV28 that is used to validate the processing data. Note that 

assay data was acquired in almost all holes in this area, but the 

wireline logs of resistivity are only available in a limited number 

of the holes. That is the reason why we integrate assay data into 

the MT inversion instead of resistivity. 

Borehole Data Analysis 

A histogram of the borehole resistivity data (Figure 5) illustrates 

that a conductive model of the subsurface in this area is well 

separated. The conductive media may relate to mineralized 

zones and/or carbonaceous phyllite, and the remaining rocks are 

resistive. The borehole data shows that rocks in this area tend to 

have a bi-modal distribution of values in resistivity, which is 

difficult for an inversion with a smoothness constraint to 

effectively reproduce. 

 

 



Kieu, D.T., et al.                    Integration of Borehole and Seismic Data into MT Inversion over Kevitsa     719 

 

 

In order to integrate borehole information directly into the 

inversion process, we need to investigate the relationships 

between resistivity and other borehole-derived properties. The 

correlation between physical properties and assay data is poor 

(Steel, 2011). Figure 6 shows that the linear correlation between 

resistivity and other properties in borehole KV28 is not high. 

The best correlated measurements are between resistivity and Co 

with a correlation coefficient value of -0.54. The correlation of 

resistivity and density is small, and it is worse than with P-wave 

velocity. That is problematic if we try to use these borehole 

properties as conventional local constraints in the inversion 

process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Histogram of resistivity of the borehole data shows 

two main geoelectrical environments. These are resistive rocks 

and conductive media relating to the ore zones and 

carbonaceous phyllite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Correlation matrix of the borehole data in KV28. 

There is no strong correlation between resistivity and assay data, 

nor between resistivity and the other petrophysical properties. 

Abbreviation: Dep - depth; Vp - P-wave velocity; Den - density; 

Res - resistivity; Co – cobalt; Cu – copper; Ni - nickel. 

 

In our process, we use FCM clustering to form relationships 

between various properties. The basic idea of clustering is to 

separate items (local cells) into groups, the variation of an item 

value is used to place the item in a different group, rather than 

directly define the values of the items. To compare the variation 

of resistivity and other features of the hole KV28, the variation 

of the data is calculated such that: 

 

 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = (
𝑑𝑎𝑡𝑎−𝑚𝑒𝑎𝑛(𝑑𝑎𝑡𝑎)

𝑚𝑒𝑎𝑛(𝑑𝑎𝑡𝑎)
)
2
  (5) 

Figure 7 presents the standardized values of the variation of 

resistivity, acoustic impedance, Cu and Ni. These values show a 

reasonable correlation and are consistent along the length of the 

borehole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Normalized variation values of resistivity, acoustic 

impedance (AI), Cu and Ni in borehole KV28. First the variation 

of the data is calculated (Equation 5) then normalized to the 

range [0, 1]. 

 

Note that in our synthetic inversion example, when we include 

boundary information of the two shallow objects, we were only 

concerned about the variation of the inverted physical property. 

In the Kevitsa data, we have reasonable correlations between the 

various measured properties. That means we can incorporate 

assay data to help define the clusters in the inversion of MT 

data. 

 

The next issue is how to include the rather localised borehole 

data to be used across the whole model of MT. We assume that 

the properties of each cell in the MT model mesh should be 

similar to the nearest borehole samples with a level of certainty. 
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In this work we weigh this certainty according to the following 

formula: 

 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑒𝑥𝑝 (−
𝑑

𝛼
)   (6) 

where d is the distance from a borehole to the MT section, α is a 

scaling factor that controls the radius of influence of borehole 

data to the vicinity. Figure 8 displays the “certainty” of 

projected borehole data on the MT section. 

 

In the next step, we cluster the Co, Cu and Ni assay data from all 

holes, and project the interpolated cluster map onto the MT 

section (Figure 9). This information is then integrated into the 

inversion process as before with boundary information in the 

synthetic example. However, in this case, we incorporate the 

certainty weighting. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The borehole certainty weights projected on the MT 

section. The certainty is calculated by the distance from 

borehole to the section (Equation 6). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Clustering and extrapolation results of borehole assay 

data, including Co, Cu and Ni, projected on the MT section.   

Inversion of Kevitsa MT Data 

We have run the inversion of the MT data with a traditional 

inversion algorithm, ModEm code (Egbert and Kelbert, 2012); 

hereafter this inversion result is referred to as “Inv. ModEm” 

(Figure 10a). It detects the mineralization confirmed by many 

holes. However, it also appears to create a significant artefact in 

the right bottom corner of the section, and more importantly, it 

shows a resistive zone (zone B) where borehole data shows a 

significant conductive zone.  

 

Our FCM inversion process is run with two scenarios. First, just 

statistical information from boreholes is included, and second, 

we integrate the cluster information directly from boreholes into 

the inversion. Hereafter, we name the two inversion strategies 

Inv. FCM and Inv. FCM+BH, respectively. The inversion starts 

with a homogeneous initial model of 600 m, an average value 

based on borehole data. We run our inversion routine with 

different numbers of clusters plus using cluster analysis on 

available borehole data; only the results from using five clusters 

are shown here. All other inversion parameters (such as the LSQ 

misfit and prior weighting) are set identically for the two cases. 

Discussion  

Our synthetic tests demonstrate that petrophysical constraints 

via FCM clustering perform better than using a smoothness 

constraint. Moreover, using known shallow boundaries improves 

the inversion greatly. This scenario is very common in practical 

conditions where we often have information on the near-surface, 

and our objective is to know what is happening at greater depths. 

This encouraged us to trial the approach with Kevitsa. 

 

Figure 10b and c show, respectively, the inversion results of the 

two scenarios Inv. FCM and Inv. FCM+BH. First, initial values 

of FCM clustering of the borehole data is included in the 

inversion process. In this strategy, the program drives the model 

to produce conductivities with centre values similar to cluster 

centre values from the borehole data. Second, the clustering of 

borehole data is projected on the entire MT section and included 

into the inversion process in the same manner as with boundary 

information; in this case, the cluster label is the same as the 

“media” label in the previous synthetic example. As mentioned 

previously each cell’s certainty weighting is incorporated into 

the inversion to allow prior borehole data to influence the result. 

 

Both of our FCM inversion results detect the mineralization 

(zone A) and are more consistent with borehole data than Inv. 

ModEm. The conductive zone B that is confirmed by the 

borehole data appears in both inversion results. The main 

differences between the two models are that resistive zone C and 

conductive zone D are more evident in the model of Inv. 

FCM+BH than in the model of Inv. FCM. Also, neither of our 

models have a very conductive near-vertical feature in the 

basement under zone A. 

 

We have applied our FCM inversion strategies to real data from 

the Kevitsa mine site, where there is a wealth of information 

from many boreholes and seismic reflection data. However, 

there are no deep boreholes in this area, and the quality of the 

seismic reflection data is not sufficient for robust impedance 

inversion, particularly at great depths because of a low signal-to-

noise ratio. Thus, the MT method can provide an additional tool 

to image the subsurface at greater depths. In comparison with a 

traditional inversion algorithm ModEm code (Egbert and 

Kelbert, 2012) that uses only smoothness constraints, our 

algorithm constructs distinct resistivity zones that reflect the true 

rock units. 
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Figure 10: Inversion results of the MT line using different constraints: (a) Inv. ModEm using a smoothness constraint (Egbert and Kelbert, 

2012); (b) Inv. FCM using petrophysical distribution constraints; (c) Inv. FCM + BH using petrophysical statistics to guide cluster centres, 

and the integration of assay data to constrain which particular cluster to weight towards. The boreholes (grey scale) in 100 m vicinity of the 

MT profile are projected on MT model to compare with inverted models (jet colour scale). The triangles at the top of profile mark locations 

of MT stations on the profile. The dashed white line shows the area mapped with 3D seismic data. The red circles mark conductive zones, 

the shallow zone is ore body. 
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Figure 11: (a) Section of acoustic impedance (AI) generated via model-based inversion of seismic reflection data. Overlay of AI and 

inverted MT models: Inv. ModEm (b); Inv. FCM (c); Inv. FCM + BH (d).  The red circles show position of the Kevitsa orebody (zone A), 

blue circles mark zone C and D positions. Note that these sections are cropped from the sections in Error! Reference source not 

found.Figure 10 (marked by dashed white rectangles). 
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Figure 12: Comparison between data from borehole KV28 and 

inversion results using ModEm code (Inv. ModEm), our 

program with petrophysical constraint only (Inv. FCM), and 

integration of borehole data in the inversion (Inv. FCM + BH). 

The borehole data is smoothed by a low-pass filter. 

 

Our inverted model is more comparable with inverted seismic 

impedance data than the smooth inversion results. The acoustic 

impedance (AI) section (Figure 11a) derived by a model-based 

inversion algorithm (performed independently) shows very 

similar features to our MT models. However, to make the 

seismic impedance inversion workable, the same borehole 

information is used. The orebody may be reflected in the zones 

that show a high variation of AI. The resistive zone C in the MT 

data is consistent with high AI values, and low values of AI 

zone reflect conductive zone D.  

 

In comparison with borehole resistivity data (Figure 12), our 

results are closer to the borehole data than the results of the 

smooth inversion. The inversion result Inv. ModEm could not 

recover the ‘blocky’ model, but our routine can construct a 

model with different units that may better represent crystallized 

media like in the case of Kevitsa.  

As a final step, the inversion results of both MT and seismic 

data can be combined and clustered in the FCM program; the 

output is a cluster map of the data section (Figure 13). This map 

can be used like a pseudo-lithological section, whose geological 

interpretation is much more intuitive than analyzing sections of 

petrophysical properties (e.g., seismic or MT data) alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Cluster results using both acoustic impedance from 

3D seismic and resistivity from MT in the Inv. FCM+BH model. 

This cluster model may be used as a pseudo-lithology section to 

make geophysical data more interpretable than the sections of 

inverted physical properties alone.  Often, a small contrast in 

physical properties can reflect significant changes in lithology; 

thus a cluster model provides a useful product in understanding 

the geology. 

CONCLUSIONS 

Constraining magnetotelluric inversion via fuzzy clustering 

provides a powerful tool to include both spatial and 

petrophysical data to construct a reliable geo-electrical model. 

Fuzzy c-means guided inversion is shown to separate the major 

geo-electrical rock units, differentiating between the highly 

conductive zones from the other resistive media in MT. The 

sharper variations between resistive zones better reflect the rock 

units compared to a smooth resistivity model using a traditional 

non-linear conjugate gradient inversion method with smoothness 

constraints. The application of our method to the case study at 

the Kevitsa mine site shows that our results are comparable, 

within the resolution limits of MT methods, with known 

geological models and seismic results. Also, they are consistent 

with the borehole data.  We further note that the cluster models 

may themselves be used as an interpretation aid, rather than 

using inverted physical values from the geophysical data. 
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