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ABSTRACT 

 
The traditional algorithms for airborne EM data interpretation, e.g., the Marquardt-Levenburg method, generally take the negative 
gradient of an objective function as the searching direction and run only downhill search.  Such algorithms are strongly dependent on 
the starting model and can easily be trapped in local minima.  Simulated annealing (SA) exploits the analogy between the annealing 
process of a melted metal cooling and freezing into a crystalline structure of minimum energy, and searches for a minimum in a 
mathematical optimization. It employs a random search that accepts not only the model updates that decrease the system energy, but 
also those that increase the system energy. The latter helps the searching process jump out of local minima and converge to a global 
minimum. During the random walk through the model space in the annealing process, no preferred searching direction is required as 
for the traditional algorithms. This avoids the calculation of Jacobian derivatives. Further, the SA process allows the starting model to 
be far away from the true model and thus removes the strong dependency of the results on the starting model. In this paper, we 
implement the SA for airborne EM inversion, where the starting model is allowed to vary in a large range. We address the SA 
technique by comparing the airborne EM inversion with a thermodynamic process and discuss specifically the SA procedure from 
model configuration, random walk for model updates, objective function, and annealing schedule. We examine the effectiveness of the 
algorithm for airborne EM by inverting both theoretical and survey data and comparing the results with those from the traditional 
algorithms.  
 
 
 
 
 
 

INTRODUCTION 

 
With airborne EM (AEM) systems being widely used in 
geological mapping for environmental and engineering 
purposes, more and more attention has been paid to data 
interpretation and inversion. While the airborne EM inverse 
problem is non-linear, even for the simplest 1D earth model, a 
linearization of the problem and an iteration process are 
generally required for the model solution. The traditional 
algorithms used in AEM inversion, e.g., the Marquardt-
Levenburg method, minimize the objective function defined by 
the fitting error between the data and the model results. The 
searching direction of these algorithms for the inverse model i s  
defined by the Jacobean matrix as the negative gradient of the 
objective function. Thus, the search is always downhill. For 
appropriate starting models (close to the true model), the search 
can easily converge to the true solution. However, AEM 
inversion is non-unique, meaning that a desired global minimum 
for the true solution is hidden among many local minima.  Due 
to the greedy character of downhill search, the solutions from 
the traditional algorithms are easily trapped in the local minima. 

In this paper, we investigate the simulated annealing (SA) 
global-searching algorithm for airborne EM inversion by 
comparing the procedure to a thermodynamic system. The major 
advantage of SA over traditional algorithms is its ability to avoid 

becoming trapped in local minima by allowing both downhill 
and uphill searches. In the past, SA has been successfully used 
in dc and IP inversion (Sen and Stoffa, 1995; Chunduru et al., 
1996). Not much attention has been paid to airborne EM 
inversion.  The simulated annealing for mathematical 
optimization involves five fundamental aspects: Boltzmann 
probability, model configuration, random walk for model 
update, objective function, the temperature and annealing 
schedule. We discuss these separately by specializing each to 
airborne EM. We demonstrate the effectiveness of SA for 
airborne EM inversion by inverting both synthetic data and 
survey data from Texas Levees area by Fugro RESOLVE 
system and comparing the results with the traditional techniques. 
 

BOLTZMANN PROBABILITY 

 
The SA scheme for optimization is called the Metropolis 
procedure (Kirkpatrick et al. 1983). The procedure for airborne 
EM can be compared to the cooling process of a thermodynamic 
system. Except for the temperature, the states of the 
thermodynamic system are analogous to the airborne EM model 
solutions; the system configuration change is analogous to the 
AEM model update. While the energy for the system is 
analogous to the objective function or fitting errors, the ground 
state in the thermodynamic system is analogous to the global 
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minimum of AEM inversion. In the SA procedure, an initial 
state of the system is chosen at energy E and temperature T. 
While holding T constant, the initial configuration is perturbed 
and the change in energy ∆E is computed. If the change in 
energy is negative (energy reduced), the new configuration is 
unconditionally accepted (with probability of 1). If the change in 
energy is positive (energy increased), it is accepted with a 
probability given by the Boltzmann distribution 
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where b is the Boltzmann constant. This process is repeated for 
sufficient times to obtain good sampling statistics for the current 
temperature. Then, the temperature is decremented according to 
an annealing schedule and the entire process repeated until a 
frozen state is achieved. The Boltzmann probability distribution 
explains how the SA process prevents a system from being 
trapped in local minima. In fact, when the search goes uphill, the 
traditional algorithms will stop going forward. However, the SA 
algorithm allows the search to continue with a probability. This 
allows the searching process to jump out of the local minima to 
reach a global one.  
 

MODEL CONFIGURATION 
 
SA model configuration for AEM inversion involves the 
description of the model by physical parameters of the earth. In 
frequency-domain helicopter EM, the transmitter and receiver 
are generally contained within a Kevlar shell (bird) towed below 
the helicopter. We use the Fugro RESOLVE system and invert 
the data for five horizontal coplanar (HCP) coil pairs (Fig.1, Yin 
and Hodges, 2007). The transmitter-receiver separation is 8m, 
the frequency ranges from 380Hz to 102 kHz. The bird altitude 
is typically 30m.  The EM field for an HCP coil configuration is 
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where m is the dipole moment of the transmitter, z±  = ho ± z,   

2 2( )R r z+ += + , ho is the bird altitude and T(z–) is Hankel’s 

integral, involving the earth parameters and the bird geometry 
(Yin and Hodges, 2007). In airborne EM, the primary field (the 
first term in the above equation) is generally stripped off, while 
the secondary field is normalized by the primary field and 
expressed as parts per million (ppm) of the primary field, i.e. 
ppm = (Hx – Ho) / Ho x 106.     
 

RANDOM WALK FOR MODEL UPDATE 
 
The configuration change of a system means the update of 
model parameters to create a new system configuration from the 
original one. In our airborne EM inversion for an L-layer one-
dimensional earth, we have 2L parameters. Since all earth 
parameters should be positive, there are substantial advantages 

in using the logarithm of these parameters. This ensures the 
positiveness of all earth parameters while the inverse model 
parameters are allowed to change between -∞ and + ∞.  Thus, 
for an L-layer earth, the model parameters used in the EM 
inversion of this paper are X = (x1, x2,.., x2L) = (lnρ1,.., lnρL, 
lnh1,..,lnhL-1, lnho) with  ρ1, ρ2,.., ρL and h1, h2,.., hL-1 denoting the 
resistivities and thicknesses of the earth, while ho denotes the 
EM bird altitude. In mathematical optimization using SA, the 
system configuration change is achieved randomly, meaning that 
the process takes random walks through the model space, 
looking for points with low energy. Refer to equation 1, if the 
system energy is reduced, i.e. ∆E# 0, then p=1, and the new 
system configuration is unconditionally accepted (downhill 
search). If the system energy is increased (uphill search), the 
probability of taking the step is determined by the Boltzmann 
distribution. The choice of the random walk for model update is 
problem specific.  Since the SA was introduced into 
mathematical optimization, a lot of random walk procedures 
have been suggested. For our AEM inversion, we take the 
scheme for model perturbation based on the temperature-
dependent Cauchy distribution (Sen and Stoffa, 1995), i.e. 
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where i and k denote respectively the ith earth parameter and kth 
annealing step, while xi

max and xi
min denote the upper and lower 

boundary for ith earth parameter. Ti is the temperature for 
parameter i, while ui is a random number drawn from a uniform 
distribution in the range [0,1].  
 

OBJECTIVE FUNCTION 
 
In simulated annealing, the objective function computes the 
energy for any given system state. For the airborne EM inverse 
problem, we define the SA objective function as the fitting error, 
i.e.                 
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where M is the number of frequencies,  Rei and Imi are 
respectively the theoretical in-phase and quadrature responses 
for frequency i , while Hz0 = (Re 0i + j Im 0i) are the survey data.  
 

ANNEALING SCHEDULE 
 
The annealing schedule for SA process comprises an initial 
temperature and the rules for lowering it as the search progresses. 
The temperature and annealing schedule are problem specific. 
Since SA was introduced into the mathematical optimization, a 
lot of schedules were suggested for the cooling process. For our 
purpose of airborne EM inversion, we implement the 
exponential cooling schedule (Chunduru et al., 1996) 
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where T0 is the initial temperature, c and N are constants. These 
parameters may vary for different model parameters, which are 
generally determined by experiments. Sen and Stoffa (1995) 
showed that by combining the above annealing schedule with 
the model update scheme in equations 3 and 4, a global 
minimum could be statistically obtained. Based on experiments 
with synthetic data, we choose in this paper c=1, N=2 for all 
model parameters, while T varies for different parameters. As it 
will be seen, the cooling schedule in equation 6 combining 
model updates in equations 3 and 4 yields stable and fast 
solutions for both synthetic and survey data.  

MODELRESULTS 

Synthetic data 
To test the SA algorithm introduced above and to obtain optimal 
annealing parameters for airborne EM inversion, we assume a 

two-layer earth model. The top layer has a resistivity of 10 ohm-
m and a thickness of 10m. The underlying half-space has a 
resistivity 100 ohm-m. The bird altitude is 30m. The EM 
responses for 5 HCP frequencies (380, 1400, 6200, 25000, 
102000Hz) of the Fugro RESOLVE system are calculated and 
used as data for the inversion. For the starting model, all earth 
parameters are allowed to vary in a large range. From Figure 1, 
one sees that, for the assumed range of starting models, all 
parameters are resolved after 250 iterations (lowering initial 
temperature). Specifically, for the range of 1-20 ohm-m for ρ1, 
10-200 ohm-m for ρ2, and 0-60m for h1, all searches converge to 
the true value. The fitting error reduces continuously from over 
50% initially to below 0.2%. The good results show that the 
right choice on the SA schedule and temperature has been made 
for airborne EM data.  
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Figure 1: Inversion results by simulated annealing for a theoretical two-layer model. (a) First layer resistivity; (b) second layer resistivity; (c) first layer 
thickness; (d) fitting error. 
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Field data 

 

 

Figure 2 shows the inversion results of a survey by Fugro 
RESOLVE system over Rio Grande Levees near Brownsville, 
Texas for the U.S. Army Corps of Engineers. Each inversion 
was run with 20 different starting models within the range of 5 
times greater or less than a best estimate of the resistivity and 
thickness for each layer. The average time for 20 runs (each with 
400 temperatures, 40 random walks per temperature) was 5 

minutes. For comparison, the sections obtained by CDT 
(conductivity-depth-transform) and SVD inversion (Hodges, 
2003) are also displayed. It is seen that the simulated annealing 
algorithm gives a more continuous and stable result than the 
other two algorithms. 
 

 
 

 
 

 
 

 

 

 

 

Figure 2: Inversion results from the survey data in Texas Levees area. (a) CDT section; (b) 3-layer SVD inversion; (c) 3-layer SA inversion. The 
resistivity unit is ohm-m. Data courtesy of U.S. Army Corps of Engineers. 

 

CONCLUSIONS 

 
In comparison to traditional inversions, the simulated annealing 
technique offers more stable results due to its global search 
scheme. The starting model for SA can be selected as a range, 
rather than the traditional assumption of single value for each 
parameter. Thus, the dependence on accurate starting models is 
reduced. Both the theoretical and survey data inversions show 
that the designed SA procedure works well for AEM data. 
However, the annealing schedule, initial temperature, and model 
update are all model specific. Furthermore, in comparison to the 
traditional local searching algorithm, the model calculation for 
SA can be heavy. This means that a fast modeling algorithm is 
required to ensure the quick search. 
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