Contacts: [1] Maria Annecchione (maria.annecchione (maria.annecchione @gedex.ca), Brian Main (brian.main@gedex.ca), Gedex Inc., 407 Matheson Blvd East, Mississauga, Ontario, Canada, M4H 1P1 Contacts: [1] Maria Annecchione (maria.annecchione (maria.annecchione @gedex.ca), Brian Main (brian.main@gedex.ca), Gedex Inc., 407 Matheson Blvd East, Mississauga, Ontario, Canada, M4H 1P1 Contacts: [1] Maria Annecchione (maria.annecchione (maria.annecchione @gedex.ca), Brian Main (brian.main@gedex.ca), Gedex Inc., 407 Matheson Blvd East, Mississauga, Ontario, Canada, M4H 1P1 Contacts: [1] Maria Annecchione (maria.annecchione @gedex.ca), Brian Main (brian.main@gedex.ca), Brian Main (brian.m

Two Kimberlite Model

Gravity Gradiometry

$$\Gamma = \begin{bmatrix} \Gamma_{\mathrm{X}\mathrm{X}} & \Gamma_{\mathrm{X}\mathrm{Y}} & \Gamma_{\mathrm{X}\mathrm{Z}} \\ \Gamma_{\mathrm{Y}\mathrm{X}} & \Gamma_{\mathrm{Y}\mathrm{Y}} & \Gamma_{\mathrm{Y}\mathrm{Z}} \\ \Gamma_{\mathrm{Y}\mathrm{X}} & \Gamma_{\mathrm{Y}\mathrm{Y}} & \Gamma_{\mathrm{Y}\mathrm{Z}} \\ \Gamma_{\mathrm{Z}\mathrm{X}} & \Gamma_{\mathrm{Z}\mathrm{Y}} & \Gamma_{\mathrm{Z}\mathrm{Z}} \end{bmatrix} = \begin{bmatrix} \frac{\partial g_{\mathrm{X}}}{\partial \mathrm{X}} & \frac{\partial g_{\mathrm{X}}}{\partial \mathrm{Y}} & \frac{\partial g_{\mathrm{X}}}{\partial \mathrm{Z}} \\ \frac{\partial g_{\mathrm{Y}}}{\partial \mathrm{X}} & \frac{\partial g_{\mathrm{Y}}}{\partial \mathrm{Y}} & \frac{\partial g_{\mathrm{Y}}}{\partial \mathrm{Z}} \\ \frac{\partial g_{\mathrm{Z}}}{\partial \mathrm{X}} & \frac{\partial g_{\mathrm{Z}}}{\partial \mathrm{Y}} & \frac{\partial g_{\mathrm{Z}}}{\partial \mathrm{Z}} \\ \end{bmatrix}$$

where (g_x, g_y, g_z) is the Earth's gravity vector. Gravity potential satisfies Laplace's equation $(\Gamma_{xx}+\Gamma_{yy}+$ $\Gamma_{zz}=0$ and the gradient tensor is symmetric ($\Gamma_{ij}=\Gamma_{ji}$

for $i \neq j$). Gravity gradient has units of Eötvos (1 Eo = 0.1 mGal/km = 10⁻⁹ sec⁻²).

Gradiometry vs gravimetry? The figure above compares g_z and Γ_{zz} over a vertical contact. The gradient fields offer enhanced shorter wavelength information and are better at imaging shallower sources than the gravity vector components.

Gedex HD-AGGTM Target Performance

Gedex Inc is developing an airborne gravity gradiometer system, the High Definition Airborne Gravity Gradiometer (HD-AGGTM), having a target noise level of 1 Eo/Hz^{1/2} from 0.001 Hz to 1 Hz, or over wavelengths of 10s of meters to 10s of kilometers assuming aircraft speeds of 100 to 120 knots.

The Sensor

Superconducting mechanical components, sensing coils and SQUID amplifiers are required to build a gravity gradiometer having the lowest possible intrinsic noise and the highest possible material and circuit stability. The single-axis gravity gradiometer prototype uses a pair of matched angular accelerometers and provides measurements of the gravity gradient tensor diagonal element combination Γ_{xx} - Γ_{y} The full three-axis sensor (right) will also provide observations of Γ_{xx} - Γ_{zz} and Γ_{yy} - Γ_{zz} .

The Platform

The Gedex HD-AGGTM design incorporates a six-degree-of-freedom motion isolation sub-system (GeoMIM) intended to reduce errors associated with the down-conversion of high-frequency platform jitter outside the signal band to lower frequencies within the signal band. The platform design incorporates both passive and active isolation.

Quiescent Test Results

Gradiometer data were recorded at the University of Maryland (right). The square root of the power spectral density (PSD) is less than 1 Eo/Hz^{1/2} from about 0.05 Hz to 1 Hz. With the gradiometer housed in the GeoMIM, custom temperature control electronics, and dynamics-related corrections, the target performance will be achieved in airborne mode.

DEBERS De Beers, the world leader in diamond exploration and mining, has entered into a strategic, multi-year agreement with Gedex Inc. to apply its HD-AGGTM technology in the field.

Kimberlite Exploration

Kimberlites are diamond-bearing pipe-like structures composed of an upper crater, a middle diatreme, and a root. The surface area of kimberlites ranges from 0.5 to 150 Ha. The size of the kimberlite is not indicative of diamond content, i.e. whether or not it will be economic.

Simulated AGG Surveys

Survey parameters		0.79 Ha→
Traverse Line Spacing :	100 m	ل ع ج
Control Line Spacing :	100 m	Ö 500
Ground Clearance :	100 m	N 1000 1500
Forward Speed :	100 knots	500 X - North (m) 0 500 X - Fast (m)
Data Sampling :	2 Hz (25.5 m)	-500 -500

Two-Kimberlite Model	Thickness	Density	Radius (m)	
	(m)	(g/cc)	0.79 Ha	3.1 Ha
homogeneous overburden	50	2.0	N/A	N/A
heterogenous overburden	50	2.02-2.19	N/A	N/A
crater	200	2.25	50	100
diatreme	200	2.5	25	50
homogeneous host rock	N/A	2.6	N/A	N/A
heterogeneous host rock	N/A	2.21-2.64	N/A	N/A

Homogenoeus Overburden and Host Rock

The 10 Eo/Hz^{1/2} noise level (filtered) approximates the performance of operational nonsuperconducting AGG systems in fixed-wing aircraft. The spatial filter is a radial cosine taper low-pass of order 2 with roll-off start wavelength of 500 m and stop wavelength o

Combined interpretation of magnetic and gravity data are required to confirm the pres- Eo/Hz^{1/2} ence of kimberlites in

Benefits of a high performance airborne gravity gradiometer (HD-AGGTM) for resource exploration

Orebody Delineation

The Spence deposit is a supergene-enriched copper porphyry deposit located in northern Chile. This model was part of the Mira Geoscience Ltd CAMIRO × 2000 project. The topographic relief has a maximum of 197 m and a standard deviation of 31 m. The highest point 1000 of the leach cap is less than 10 m below the surface topography. The Γ_{zz} response was computed on a drape surface 100 m above the ground.

Grids of random normally distributed noise having 1 and 10 Eo standard deviations were added to the Γzz 5000 grid. This is equivalent to 1 $Eo/Hz^{1/2}$ noise and 10 $Eo/Hz^{1/2}$ noise up to 1 Hz assuming an aircraft speed 2000of 50 m/s and a data sampling rate of 2 Hz.

The spatial filter is a radial cosine taper low-pass of order 2 with roll-off start wavelength of 700 m and stop 2000 wavelength of 300 m. The 10 Eo/Hz^{1/2} noise level (filtered) approximates the performance of operational non-superconducting AGGs in fixed-wing aircraft.

Y - East (m)

The HD-AGGTM performance is expected to increase the number of applications in oil and gas and mineral exploration. The benefits are focused drilling programs and follow-up surveys, reduced exploration costs and value created by increased probability of discovery.

I tion of 1 Eötvos or better at spatial resolutions of 50-60 meters or better, from a fixed-wing aircraft, assuming speeds of 100 to 120 knots.

This performance level represents an order of magnitude improvement in gradient data accuracy and resolution compared to non-superconducting operational AGG systems. This provides improvement in detection and delineation of economic near-surface compact mass anomalies, and of deeper geological structure that would go undetected or be poorly resolved by operational AGG systems.

GG TM is defined by its target performance under typical survey conditions. At target
e the HD-AGG TM will provide gravity gradient data with an error standard devia-

Channel Sequence	Depth (m)	Width (m)
Shallow (141 m)	20	500
Intermediate (162)	40	1000
Deep (203 m)	60	2000

